Automatic body segmentation with graph cut and self-adaptive initialization level set (SAILS)

In this paper, we propose an automatic human body segmentation system which mainly consists of human body detection and object segmentation. Firstly, an automatic human body detector is designed to provide hard constraints on the object and background for segmentation. And a coarse-to-fine segmentation strategy is employed to deal with the situation of partly detected object. Secondly, background contrast removal (BCR) and self-adaptive initialization level set (SAILS) are proposed to solve the tough segmentation problems of the high contrast at object boundary and/or similar colors existing in the object and background. Finally, an object updating scheme is proposed to detect and segment new object when it appears in the scene. Experimental results demonstrate that our body segmentation system works very well in the live video and standard sequences with complex background.

[1]  Emile A. Hendriks,et al.  Temporal stabilization of video object segmentation for 3D-TV applications , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[2]  Ioannis Patras,et al.  Semi-automatic object-based video segmentation with labeling of color segments , 2003, Signal Process. Image Commun..

[3]  Jiaya Jia,et al.  Poisson matting , 2004, SIGGRAPH 2004.

[4]  Yaser Sheikh,et al.  Bayesian object detection in dynamic scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Çigdem Eroglu Erdem,et al.  Video object segmentation and tracking using region-based statistics , 2007, Signal Process. Image Commun..

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[8]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[9]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[10]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jian Sun,et al.  Video object cut and paste , 2005, SIGGRAPH 2005.

[12]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Zhiqiang Wei,et al.  Effective vehicle detection technique for traffic surveillance systems , 2006, J. Vis. Commun. Image Represent..

[14]  Weisi Lin,et al.  Marker-based image segmentation relying on disjoint set union , 2006, Signal Process. Image Commun..

[15]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[16]  King Ngi Ngan,et al.  FaceSeg: Automatic Face Segmentation for Real-Time Video , 2009, IEEE Transactions on Multimedia.

[17]  Jitendra Malik,et al.  Poselets: Body part detectors trained using 3D human pose annotations , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  Anastasis A. Sofokleous,et al.  Review: H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia , 2005, Comput. J..

[19]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[20]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[21]  King Ngi Ngan,et al.  Unsupervized Video Segmentation With Low Depth of Field , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[22]  David Salesin,et al.  A Bayesian approach to digital matting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Wenxian Yang,et al.  Automatic segmentation for semantic objects from multiview images , 2008 .

[24]  Jörn Ostermann,et al.  Object-based analysis-synthesis coding based on the source model of moving rigid 3D objects , 1994, Signal Process. Image Commun..

[25]  Huitao Luo,et al.  An interactive authoring system for video object segmentation and annotation , 2002, Signal Process. Image Commun..

[26]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[27]  King Ngi Ngan,et al.  Saliency model-based face segmentation and tracking in head-and-shoulder video sequences , 2008, J. Vis. Commun. Image Represent..

[28]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[29]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[30]  Andrew Blake,et al.  Bi-layer segmentation of binocular stereo video , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  King Ngi Ngan,et al.  Multi-view video based multiple objects segmentation using graph cut and spatiotemporal projections , 2010, J. Vis. Commun. Image Represent..

[32]  Chunhong Pan,et al.  An Iterative Bayesian Approach for Digital Matting , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[33]  Maneesh Agrawala,et al.  Interactive video cutout , 2005, SIGGRAPH 2005.

[34]  Ahmet M. Kondoz,et al.  Object tracking in surveillance videos using compressed domain features from scalable bit-streams , 2009, Signal Process. Image Commun..

[35]  Serge J. Belongie,et al.  What went where , 2003, CVPR 2003.

[36]  A. Criminisi,et al.  Bilayer Segmentation of Live Video , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[37]  King Ngi Ngan,et al.  Automatic video segmentation and tracking for content-based applications , 2007, IEEE Communications Magazine.

[38]  Michael Cohen,et al.  Video tooning , 2004, SIGGRAPH 2004.

[39]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[40]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Other Conferences.

[41]  Yunmei Chen,et al.  Joint Image Registration and Segmentation , 2003 .

[42]  Fatih Murat Porikli,et al.  A Bayesian Approach to Background Modeling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[43]  Zen Chen,et al.  A quality controllable multi-view object reconstruction method for 3D imaging systems , 2010, J. Vis. Commun. Image Represent..

[44]  Jenq-Neng Hwang,et al.  Fast and automatic video object segmentation and tracking for content-based applications , 2002, IEEE Trans. Circuits Syst. Video Technol..

[45]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[46]  Harry Shum,et al.  Background Cut , 2006, ECCV.

[47]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[48]  Oliver Schreer,et al.  Stereo analysis by hybrid recursive matching for real-time immersive video conferencing , 2004, IEEE Transactions on Circuits and Systems for Video Technology.