Implementation of logical gates on infinite dimensional quantum oscillators

In this paper we study the error in the approximate simultaneous controllability of the bilinear Schrodinger equation. We provide estimates based on a tracking algorithm for general bilinear quantum systems and on the study of the finite dimensional Galerkin approximations for a particular class of quantum systems, weakly-coupled systems. We then present two physical examples: the perturbed quantum harmonic oscillator and the infinite potential well.

[1]  Thomas Chambrion,et al.  Periodic excitations of bilinear quantum systems , 2011, Autom..

[2]  D. D’Alessandro Directions in the Theory of Quantum Control , 2003 .

[3]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[4]  Mazyar Mirrahimi,et al.  Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well , 2009, SIAM J. Control. Optim..

[5]  Reinhard Illner,et al.  Limitations on the control of Schrödinger equations , 2006 .

[6]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[7]  Nabile Boussaid,et al.  Weakly Coupled Systems in Quantum Control , 2011, IEEE Transactions on Automatic Control.

[8]  Julien Salomon,et al.  A stable toolkit method in quantum control , 2008 .

[9]  Mazyar Mirrahimi,et al.  Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.

[10]  Karine Beauchard,et al.  Semi-global weak stabilization of bilinear Schrödinger equations , 2010 .

[11]  Mario Sigalotti,et al.  A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.

[12]  M. Slemrod,et al.  Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[13]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[14]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[15]  D. Sugny,et al.  Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field , 2009, 0906.1051.