Control of ion loss from Mars during solar minimum

A hybrid particle code has been used to examine the interaction of the solar wind with Mars during solar minimum. The results were surprising as they produced ion loss rates from Mars far in excess of what is estimated from MEX. The results are analyzed and found to be consistent with the competition between photochemical rates and advection of the ionosphere. The simulations showed significant erosion of the ionosphere at altitudes between 200 km and 250 km altitudes. Addition of the crustal magnetic fields reduced the erosion and reduced the ion loss rates to a level consistent with the data.

[1]  Kenneth G. Powell,et al.  Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .

[2]  K. Powell,et al.  THE SOLAR WIND INTERACTION WITH MARS: RESULTS OF THREE-DIMENSIONAL MHD STUDIES , 2001 .

[3]  Rickard N. Lundin,et al.  Aspera/Phobos measurements of the ion outflow from the MARTIAN ionosphere , 1990 .

[4]  A. Nagy,et al.  Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields , 2010 .

[5]  K. Powell,et al.  The solar wind interaction with Mars: results of three-dimensional three-species MHD studies , 2001 .

[6]  Andrew F. Nagy,et al.  Ion escape fluxes from Mars , 2007 .

[7]  A. Nagy,et al.  Electron impact ionization in the vicinity of comets , 1987 .

[8]  R. Lundin,et al.  A comet‐like escape of ionospheric plasma from Mars , 2008 .

[9]  S. Brecht Magnetic asymmetries of unmagnetized planets , 1990 .

[10]  R. Modolo,et al.  Capture of solar wind alpha‐particles by the Martian atmosphere , 2009 .

[11]  S. Barabash,et al.  On the momentum transfer of the solar wind to the Martian topside ionosphere , 1991 .

[12]  S. Barabash,et al.  Large density fluctuations in the martian ionosphere as observed by the Mars Express radar sounder , 2010 .

[13]  Pekka Janhunen,et al.  Ion escape from Mars in a quasi‐neutral hybrid model , 2002 .

[14]  G. Chanteur,et al.  Influence of the solar EUV flux on the Martian plasma environment , 2005 .

[15]  Ignasi Ribas,et al.  Loss of water from Mars: Implications for the oxidation of the soil , 2003 .

[16]  Jhoon Kim,et al.  Solar cycle variability of hot oxygen atoms at Mars , 1998 .

[17]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[18]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[19]  H. Zou,et al.  Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars , 2007 .

[20]  Robert M. Winglee,et al.  Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events , 2006 .

[21]  H. Rosenbauer,et al.  Ions of planetary origin in the Martian magnetosphere (Phobos 2/Taus experiment) , 1991 .

[22]  S. A. Ledvina,et al.  Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .

[23]  J. Fox Morphology of the dayside ionosphere of Mars: Implications for ion outflows , 2008 .

[24]  Stephen H. Brecht,et al.  The Solar Wind Interaction With the Martian Ionosphere/Atmosphere , 2007 .

[25]  A. Nagy,et al.  Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions , 2009 .

[26]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[27]  R. Lundin,et al.  Solar wind erosion of the polar regions of the Mars ionosphere , 2009 .

[28]  R. E. Johnson,et al.  Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .

[29]  H. Hayakawa,et al.  Ionospheric plasma acceleration at Mars: ASPERA-3 results , 2006 .

[30]  R. Lundin,et al.  Atmospheric origin of cold ion escape from Mars , 2009 .

[31]  M. Mitchner,et al.  Partially ionized gases , 1973 .

[32]  S. Brecht Hybrid simulations of the magnetic topology of Mars , 1997 .

[33]  Uwe Motschmann,et al.  Plasma boundaries at Mars: a 3-D simulation study , 2004 .

[34]  S. Brecht,et al.  Ion distributions of 14 amu pickup ions associated with Titan's plasma interaction , 2004 .

[35]  Naoki Terada,et al.  A comparison of global models for the solar wind interaction with Mars , 2010 .

[36]  J. Cain,et al.  An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .

[37]  H. Lammer,et al.  Nonthermal atmospheric escape from Mars and Titan , 1991 .

[38]  B. Hynek,et al.  Ancient ocean on Mars supported by global distribution of deltas and valleys , 2010 .

[39]  S. McKenna-Lawlor,et al.  Pickup ions near Mars associated with escaping oxygen atoms , 2002 .

[40]  S. Brecht,et al.  Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars , 1991 .

[41]  C. Russell,et al.  3D global multi‐species Hall‐MHD simulation of the Cassini T9 flyby , 2007 .

[42]  Helmut Lammer,et al.  Loss of H and O from Mars : Implications for the planetary water inventory , 1996 .

[43]  J. Slavin,et al.  Bow Shock and Upstream Phenomena at Mars , 2004 .

[44]  J. Fox,et al.  Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution , 1997 .

[45]  D. Larson,et al.  Simulation of the Saturnian magnetospheric interaction with Titan , 2000 .

[46]  S. Brecht Solar wind proton deposition into the Martian atmosphere , 1997 .

[47]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[48]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[49]  A. Nagy,et al.  On the effect of the martian crustal magnetic field on atmospheric erosion , 2008 .

[50]  H. Frey,et al.  An altitude‐normalized magnetic map of Mars and its interpretation , 2000 .

[51]  S. Barabash,et al.  Ion escape from Mars as a function of solar wind conditions: A statistical study , 2010 .

[52]  Douglas S. Harned,et al.  Quasineutral hybrid simulation of macroscopic plasma phenomena , 1982 .

[53]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[54]  A. Nagy,et al.  Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history , 2009 .

[55]  S. Brecht,et al.  The loss of water from Mars: Numerical results and challenges , 2010 .

[56]  S. Brecht,et al.  Three-dimensional simulations of the solar wind interaction with Mars , 1993 .

[57]  Stephen H. Brecht,et al.  Multidimensional simulations using hybrid particles codes , 1988 .

[58]  R. Dickinson,et al.  Mars thermospheric general circulation model: Calculations for the arrival of Phobos at Mars , 1988 .