A fundamental study on Ti–6Al–4V's thermal and electrical properties and their relation to EDM productivity

Abstract There are strong needs for productive/quality machining strategies of notoriously “difficult-to-machine” aerospace materials. The current means of machining these materials is dominated by mechanical cutting methods, which are costly due to high tooling costs, poor surface quality and limitations in the workpiece features and operations that can be machined. The newest EDM technology may be able to circumvent problems encountered in mechanical machining methods. In this paper, the EDM technology has been used to machine titanium alloy Ti–6Al–4V to investigate the effect of Ti–6Al–4V's thermal and electrical properties on the EDM productivity. In the study, temperature measurements have been made for Ti–6Al–4V workpieces with various duty factors to clarify the essential causes of difficulty in machining titanium alloys and observe the optimal duty factor in terms of productivity and quality.