Compatible-strain mixed finite element methods for 2D compressible nonlinear elasticity

Abstract In this paper, using the Hilbert complexes of nonlinear elasticity, the approximation theory for Hilbert complexes, and the finite element exterior calculus, we introduce a new class of mixed finite element methods for 2D nonlinear elasticity– compatible-strain mixed finite element methods (CSFEM). We consider a Hu–Washizu-type mixed formulation and choose the displacement, the displacement gradient, and the first Piola–Kirchhoff stress tensor as independent unknowns. We use the underlying spaces of the Hilbert complexes as the solution and test spaces. We discretize the Hilbert complexes and introduce a new class of mixed finite element methods for nonlinear elasticity by using the underlying finite element spaces of the discrete Hilbert complexes. This automatically enforces the trial spaces of the displacement gradient to satisfy the classical Hadamard jump condition, which is a necessary condition for the compatibility of non-smooth displacement gradients. The underlying finite element spaces of CSFEMs are the tensorial analogues of the standard Nedelec and Raviart–Thomas elements of vector fields. These spaces respect the global topologies of the domains in the sense that they can reproduce certain topological properties of the bodies regardless of the refinement level of meshes. By solving several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems, in the near incompressible regime, and for bodies with complex geometries. CSFEMs are capable of accurately approximating stresses and perform well in problems that standard enhanced strain methods suffer from the hourglass instability. Moreover, CSFEMs provide a convenient framework for modeling inhomogeneities.

[1]  Arash Yavari,et al.  Differential Complexes in Continuum Mechanics , 2013, 1307.1809.

[2]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[3]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[4]  Gen-Hua Shi,et al.  Manifold Method of Material Analysis , 1992 .

[5]  Peter Wriggers,et al.  A stabilization technique to avoid hourglassing in finite elasticity , 2000 .

[6]  P. Geubelle,et al.  Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids , 2008 .

[7]  Guowei Ma,et al.  THE NUMERICAL MANIFOLD METHOD: A REVIEW , 2010 .

[8]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[9]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[10]  Peter Wriggers,et al.  A note on enhanced strain methods for large deformations , 1996 .

[11]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[12]  I. Babuska,et al.  Stable Generalized Finite Element Method (SGFEM) , 2011, 1104.0960.

[13]  Giuseppe Geymonat,et al.  Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains , 2008 .

[14]  Alessandro Reali,et al.  Stability of Some Finite Element Methods for Finite Elasticity Problems , 2009 .

[15]  S. Reese On the Equivalent of Mixed Element Formulations and the Concept of Reduced Integration in Large Deformation Problems , 2002 .

[16]  Norbert Heuer,et al.  Conjugate gradient method for dual-dual mixed formulations , 2002, Math. Comput..

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[19]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[20]  Yazid Abdelaziz,et al.  Review: A survey of the extended finite element , 2008 .

[21]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[22]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[23]  Amir R. Khoei,et al.  Extended finite element method for three-dimensional large plasticity deformations on arbitrary interfaces , 2008 .

[24]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[25]  Peter Wriggers,et al.  Approximation of incompressible large deformation elastic problems: some unresolved issues , 2013 .

[26]  Arash Yavari,et al.  The weak compatibility equations of nonlinear elasticity and the insufficiency of the Hadamard jump condition for non-simply connected bodies , 2016 .

[27]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[28]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[29]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[30]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[31]  I. Babuska,et al.  The generalized finite element method , 2001 .

[32]  Irina Mitrea,et al.  On the Regularity of Differential Forms Satisfying Mixed Boundary Conditions in a Class of Lipschitz Domains , 2009 .

[33]  Snorre H. Christiansen,et al.  Smoothed projections in finite element exterior calculus , 2007, Math. Comput..

[34]  Erwin Stein,et al.  A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .

[35]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[36]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[37]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[38]  Arash Yavari,et al.  Hilbert complexes of nonlinear elasticity , 2016 .

[39]  Ngoc Cuong Nguyen,et al.  Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics , 2012, J. Comput. Phys..

[40]  Norbert Heuer,et al.  Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems , 2001, Numer. Linear Algebra Appl..

[41]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[42]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[43]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[44]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[45]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[46]  P. Wriggers,et al.  Mixed Finite Element Methods - Theory and Discretization , 2009 .