Numerical Simulation and Modelling of Electronic and Biochemical Systems

Numerical simulation and modelling have been growing in importance and seeing steadily increasing practical application. The proliferation of applications and physical domains for which simulation technologies are now needed, compounded by generally increased complexity, has expanded the scope of numerical simulation and modelling within CAD and spurred new research directions. Numerical Simulation and Modelling of Electronic and Biochemical Systems provides an introduction to the fundamentals of numerical simulation, and to the basics of modelling electronic circuits and biochemical reactions. The emphasis is on capturing a minimal set of important concepts succinctly, but concretely enough that the reader will be left with an adequate foundation for further independent exploration. Starting from mathematical models of basic electronic elements, circuits are modelled as nonlinear differential-algebraic equation (DAE) systems. Two basic techniques - quiescent steady state and transient - for solving these differential equations systems are then developed. It is then shown how biochemical reactions can also be modelled deterministically as DAEs. Following this, frequency domain techniques for finding sinusoidal steady states of linear DAEs are developed, as are direct and adjoint techniques for computing parameter sensitivities and the effects of stationary random noise. For readers interested in a glimpse of topics beyond these basics, an introduction to nonlinear periodic steady state methods (harmonic balance and shooting) and the multitime partial differential equation formulation is provided. Also provided is an overview of model order reduction, an important topic of current research that has roots in numerical simulation algorithms. Finally, sample applications of nonlinear oscillator macromodels - in circuits (PLLs), biochemical reaction-diffusion systems and nanoelectronics - are presented.

[1]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[2]  Alberto L. Sangiovanni-Vincentelli,et al.  Steady-state methods for simulating analog and microwave circuits , 1990, The Kluwer international series in engineering and computer science.

[3]  H. Meinhardt,et al.  Biological pattern formation: fmm basic mechanisms ta complex structures , 1994 .

[4]  D.E. Root,et al.  The behavioral modeling of microwave/RF ICs using non-linear time series analysis , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[5]  Jaijeet S. Roychowdhury,et al.  Fast, accurate prediction of PLL jitter induced by power grid noise , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[6]  Ning Dong,et al.  General-Purpose Nonlinear Model-Order Reduction Using Piecewise-Polynomial Representations , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Ken Kundert,et al.  Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers , 2009 .

[8]  Charles A. Desoer,et al.  Linear System Theory: The State Space Approach , 2008 .

[9]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[10]  Roger H.J. Grimshaw,et al.  Nonlinear Ordinary Differential Equations , 1990 .

[11]  Stig Skelboe,et al.  Computation of the periodic steady-state response of nonlinear networks by extrapolation methods , 1980 .

[12]  David E. Long,et al.  Full-chip harmonic balance , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[13]  Joel R. Phillips,et al.  Projection-based approaches for model reduction of weakly nonlinear, time-varying systems , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Luís Miguel Silveira,et al.  Guaranteed passive balancing transformations for model order reduction , 2002, DAC '02.

[15]  Roland W. Freund,et al.  Reduced-order modeling of large passive linear circuits by means of the SYPVL algorithm , 1996, ICCAD 1996.

[16]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[17]  M. Nakhla,et al.  Asymptotic Waveform Evaluation: And Moment Matching for Interconnect Analysis , 1993 .

[18]  T. Aprille,et al.  Steady-state analysis of nonlinear circuits with periodic inputs , 1972 .

[19]  Georges G. E. Gielen,et al.  Behavioral modeling of (coupled) harmonic oscillators , 2002, DAC '02.

[20]  Examining tissue differentiation stability through large scale, multi-cellular pathway modeling. , 2005 .

[21]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[22]  Richard A. Kiehl,et al.  Bistable locking of single‐electron tunneling elements for digital circuitry , 1995 .

[23]  Jaijeet S. Roychowdhury,et al.  Fast PLL simulation using nonlinear VCO macromodels for accurate prediction of jitter and cycle-slipping due to loop non-idealities and supply noise , 2005, ASP-DAC.

[24]  MichaÅ RewieÅ ski A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices , 2002 .

[25]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[26]  Hee-Tae Ahn,et al.  A low-jitter 1.9-V CMOS PLL for UltraSPARC microprocessor applications , 2000, IEEE Journal of Solid-State Circuits.

[27]  Alberto L. Sangiovanni-Vincentelli,et al.  Simulation of Nonlinear Circuits in the Frequency Domain , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[28]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[29]  T. Taniuti,et al.  Perturbation Method for a Nonlinear Wave Modulation. II , 1969 .

[30]  Jacob K. White,et al.  Generating nearly optimally compact models from Krylov-subspace based reduced-order models , 2000 .

[31]  Jiri Vlach,et al.  A piecewise harmonic balance technique for determination of periodic response of nonlinear systems , 1976 .

[32]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[33]  Andrew T. Yang,et al.  Stable and efficient reduction of substrate model networks using congruence transforms , 1995, Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[34]  Leon O. Chua,et al.  Computer-Aided Analysis Of Electronic Circuits , 1975 .

[35]  R. Freund Reduced-Order Modeling Techniques Based on Krylov Subspaces and Their Use in Circuit Simulation , 1999 .

[36]  Alper Demir Phase noise in oscillators: DAEs and colored noise sources , 1998, ICCAD '98.

[37]  J. W. Mink,et al.  Quasi-Optical Power Combining of Solid-State Millimeter-Wave Sources , 1986 .

[38]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[39]  Jaijeet Roychowdhury,et al.  Efficient multi-tone distortion analysis of analog integrated circuits , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[40]  Kenneth S. Kundert,et al.  VCO jitter simulation and its comparison with measurement , 1999, Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198).

[41]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[42]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[43]  J. Phillips,et al.  Model reduction of time-varying linear systems using approximate multipoint Krylov-subspace projectors , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[44]  Mattan Kamon,et al.  A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits , 1999 .

[45]  Sheldon X.-D. Tan,et al.  Efficient very large scale integration power/ground network sizing based on equivalent circuit modeling , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[46]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[47]  A. Izenman Introduction to Random Processes, With Applications to Signals and Systems , 1987 .

[48]  A. Jimenez,et al.  Algorithms for ASTAP--A network-analysis program , 1973 .

[49]  T. Frank,et al.  Fully integrated CMOS phase-locked loop with 15 to 240 MHz locking range and /spl plusmn/50 ps jitter , 1995 .

[50]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[51]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[52]  Georges G. E. Gielen,et al.  A fitting approach to generate symbolic expressions for linear and nonlinear analog circuit performance characteristics , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[53]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[54]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[55]  J. Roychowdhury Analyzing circuits with widely separated time scales using numerical PDE methods , 2001 .

[56]  David E. Long,et al.  Efficient frequency domain analysis of large nonlinear analog circuits , 1996, Proceedings of Custom Integrated Circuits Conference.

[57]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[58]  Robert M. Weikle,et al.  Quasi-optical power-combining arrays , 1990, IEEE International Digest on Microwave Symposium.

[59]  Kessler,et al.  Pattern formation in Dictyostelium via the dynamics of cooperative biological entities. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[61]  K. J. Antreich,et al.  Schnelle stationäre simulation nichlinearer Schaltungen im Frequenzbereich , 1992 .

[62]  Jri Lee,et al.  Modeling of jitter in bang-bang clock and data recovery circuits , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[63]  D. Hess,et al.  Cycle Slipping in a First-Order Phase-Locked Loop , 1968 .

[64]  Alper Demir,et al.  Computing phase noise eigenfunctions directly from steady-state Jacobian matrices , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[65]  Carey,et al.  Resonant phase patterns in a reaction-diffusion system , 2000, Physical review letters.

[66]  Qicheng Yu,et al.  A unified approach to the approximate symbolic analysis of large analog integrated circuits , 1996 .

[67]  Peng Li,et al.  NORM: compact model order reduction of weakly nonlinear systems , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[68]  Alper Demir,et al.  A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[69]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[70]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[71]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[72]  Ning Dong,et al.  Piecewise polynomial nonlinear model reduction , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[73]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[74]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1998, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[75]  Kathryn J. Wood,et al.  Philosophical Transactions of the Royal Society of London Series B: Preface , 2001 .

[76]  Jaijeet S. Roychowdhury,et al.  Small-Signal Analysis of Oscillators Using Generalized Multitime Partial Differential Equations , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[77]  Hajime Takayama,et al.  Cooperative Dynamics in Complex Physical Systems , 1989 .

[78]  M. Steer,et al.  Nonlinear circuit analysis using the method of harmonic balance—A review of the art. Part I. Introductory concepts , 1991 .

[79]  Jaijeet S. Roychowdhury Reduced-order modelling of time-varying systems , 1999, Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198).

[80]  Jacob K. White,et al.  Efficient model reduction of interconnect via approximate system gramians , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[81]  Jacob K. White,et al.  Efficient Steady-State Analysis Based on Matrix-Free Krylov-Subspace Methods , 1995, 32nd Design Automation Conference.

[82]  K. Francken,et al.  A behavioral simulation tool for continuous-time ΔΣ modulators , 2002, ICCAD 2002.

[83]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[84]  Rob A. Rutenbar,et al.  Remembrance of circuits past: macromodeling by data mining in large analog design spaces , 2002, DAC '02.

[85]  A. Mehrotra,et al.  Noise analysis of phase-locked loops , 2002 .

[86]  J. Roychowdhury,et al.  Reduced-order modelling of linear time-varying systems , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[87]  Sheldon X.-D. Tan,et al.  Efficient DDD-based term generation algorithm for analog circuit behavioral modeling , 2003, ASP-DAC '03.

[88]  L. Nagel,et al.  Computer analysis of nonlinear circuits, excluding radiation (CANCER) , 1971 .

[89]  Jaijeet S. Roychowdhury,et al.  Oscillator-AC: restoring rigour to linearized small-signal analysis of oscillators , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[90]  P. Maini,et al.  Spatial pattern formation in chemical and biological systems , 1997 .

[91]  Zhaojun Bai,et al.  How to make theoretically passive reduced-order models passive in practice , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[92]  G. Sorkin,et al.  Applying harmonic balance to almost-periodic circuits , 1988 .

[93]  Roland W. Freund Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms , 1999, DAC '99.

[94]  H. Alan Mantooth,et al.  Modeling nonlinear dynamics in analog circuits via root localization , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[95]  Leon O. Chua,et al.  Tunneling phase Logic Cellular nonlinear Networks , 2001, Int. J. Bifurc. Chaos.

[96]  T. Ohshima,et al.  Operation of bistable phase‐locked single‐electron tunneling logic elements , 1996 .

[97]  Jaijeet Roychowdhury MPDE methods for efficient analysis of wireless systems , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[98]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[99]  Jaijeet Roychowdhury,et al.  Analyzing oscillators using multitime PDEs , 2003 .

[100]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[101]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[102]  R.W. Freund,et al.  Efficient Small-signal Circuit Analysis And Sensitivity Computations With The Pvl Algorithm , 1994, IEEE/ACM International Conference on Computer-Aided Design.

[103]  H. K. Thapar,et al.  On feed-forward and feedback timing recovery for digital magnetic recording systems , 1991 .

[104]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[105]  J. Katzenelson An Iterative Method for Solution Nonlinear , 1966 .

[106]  A. Richard Newton,et al.  Analysis of performance and convergence issues for circuit simulation , 1989 .

[107]  J. Stensby,et al.  Phase-Locked Loops: Theory and Applications , 1997 .

[108]  Georges G. E. Gielen,et al.  A behavioral simulation tool for continuous-time /spl Delta//spl Sigma/ modulators , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[109]  P.R. Gray,et al.  A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[110]  Ronald E. Mickens,et al.  Oscillations in Planar Dynamic Systems , 1996, Series on Advances in Mathematics for Applied Sciences.

[111]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[112]  A.L. Sangiovanni-Vincentelli,et al.  Behavioral simulation techniques for phase/delay-locked systems , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[113]  Swinney,et al.  Draft Draft Draft Draft Draft Draft Draft Four-phase Patterns in Forced Oscillatory Systems Ii the Periodically Forced Belousov-zhabotinsky Reaction , 2022 .

[114]  Georges G. E. Gielen,et al.  Constructing symbolic models for the input/output behavior of periodically time-varying systems using harmonic transfer matrices , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[115]  J. Roychowdhury,et al.  Capturing oscillator injection locking via nonlinear phase-domain macromodels , 2004, IEEE Transactions on Microwave Theory and Techniques.

[116]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[117]  P. Dooren,et al.  Asymptotic Waveform Evaluation via a Lanczos Method , 1994 .

[118]  T. Ohtsuki,et al.  Existence Theorems and a Solution Algorithm for Piecewise-Linear Resistor Networks , 1977 .

[119]  Dominique Schreurs,et al.  The construction and evaluation of behavioral models for microwave devices based on time-domain large-signal measurements , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[120]  A. Neri,et al.  State of the art and present trends in nonlinear microwave CAD techniques , 1988 .