Functional Genomics Via Metabolic Footprinting: Monitoring Metabolite Secretion by Escherichia Coli Tryptophan Metabolism Mutants Using FT–IR and Direct Injection Electrospray Mass Spectrometry

We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their ‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and direct injection electrospray mass spectrometry). The biological system used was based on a published study of Escherichia coli tryptophan mutants that had been analysed and discriminated by Yanofsky and colleagues using transcriptome analysis. Wild-type strains supplemented with tryptophan or analogues could be discriminated from controls using FT–IR of 24 h broths, as could each of the mutant strains in both minimal and supplemented media. Direct injection electrospray mass spectrometry with unit mass resolution could also be used to discriminate the strains from each other, and had the advantage that the discrimination required the use of just two or three masses in each case. These were determined via a genetic algorithm. Both methods are rapid, reagentless, reproducible and cheap, and might beneficially be extended to the analysis of gene knockout libraries.

[1]  J. Lindon,et al.  Characterization of metabolites in intact Streptomyces citricolor culture supernatants using high-resolution nuclear magnetic resonance and directly coupled high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy. , 1999, Analytical biochemistry.

[2]  D B Kell,et al.  Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to alpha 2-interferon production. , 1999, Journal of biotechnology.

[3]  F Baganz,et al.  Systematic functional analysis of the yeast genome. , 1998, Trends in biotechnology.

[4]  W D Wilson,et al.  Specific molecular recognition of mixed nucleic acid sequences: an aromatic dication that binds in the DNA minor groove as a dimer. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Andrews,et al.  Virtual 2-D gel electrophoresis: visualization and analysis of the E. coli proteome by mass spectrometry. , 2001, Analytical chemistry.

[6]  S G Oliver,et al.  Yeast as a navigational aid in genome analysis. 1996 Kathleen Barton-Wright Memorial Lecture. , 1997, Microbiology.

[7]  D Benton,et al.  Bioinformatics--principles and potential of a new multidisciplinary tool. , 1996, Trends in biotechnology.

[8]  M. Hecker,et al.  Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein , 2001, Applied Microbiology and Biotechnology.

[9]  B. Futcher,et al.  A Sampling of the Yeast Proteome , 1999, Molecular and Cellular Biology.

[10]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[11]  H. Westerhoff,et al.  Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway , 2001, FEBS letters.

[12]  Thomas Linke,et al.  Visualizing plant metabolomic correlation networks using clique-metabolite matrices , 2001, Bioinform..

[13]  Peter D. Karp,et al.  EcoCyc: Encyclopedia of Escherichia coli genes and metabolism , 1998, Nucleic Acids Res..

[14]  D. Kell,et al.  High-throughput classification of yeast mutants for functional genomics using metabolic footprinting , 2003, Nature Biotechnology.

[15]  S. Oliver Proteomics: Guilt-by-association goes global , 2000, Nature.

[16]  M. Riley,et al.  Interim report on genomics of Escherichia coli. , 2000, Annual review of microbiology.

[17]  Igor Goryanin,et al.  Mathematical simulation and analysis of cellular metabolism and regulation , 1999, Bioinform..

[18]  R. Brent,et al.  Functional genomics: Learning to think about gene expression data , 1999, Current Biology.

[19]  M. Boguski,et al.  Functional genomics: it's all how you read it. , 1997, Science.

[20]  A. Timperman,et al.  Proteome analysis. , 2004, Methods in molecular biology.

[21]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[22]  S. Oliver From DNA sequence to biological function , 1996, Nature.

[23]  Xueqiao Liu,et al.  Global Adaptations Resulting from High Population Densities in Escherichia coli Cultures , 2000, Journal of bacteriology.

[24]  D B Kell,et al.  Discrimination of aerobic endospore-forming bacteria via electrospray-lonization mass spectrometry of whole cell suspensions. , 2001, Analytical chemistry.

[25]  D. Kell,et al.  The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of some Eubacterium species. , 1998, FEMS microbiology letters.

[26]  A. P. Land,et al.  Characterization of metabolites by ion-trap LC-MSn , 2000 .

[27]  R. Krämer Systems and mechanisms of amino acid uptake and excretion in prokaryotes , 1994, Archives of Microbiology.

[28]  C. Yanofsky,et al.  Characterization of the tryptophanase operon of Proteus vulgaris. Cloning, nucleotide sequence, amino acid homology, and in vitro synthesis of the leader peptide and regulatory analysis. , 1992, The Journal of biological chemistry.

[29]  R. King,et al.  On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. , 2000, Trends in biotechnology.

[30]  Royston Goodacre,et al.  Rapid Differentiation of Closely RelatedCandida Species and Strains by Pyrolysis-Mass Spectrometry and Fourier Transform-Infrared Spectroscopy , 1998, Journal of Clinical Microbiology.

[31]  Douglas B. Kell,et al.  Rapid and quantitative analysis and bioprocesses using pyrolysis mass spectrometry and neural networks: application to indole production , 1993 .

[32]  B. Palsson,et al.  Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. , 2000, Journal of theoretical biology.

[33]  R. King,et al.  Accurate Prediction of Protein Functional Class From Sequence in the Mycobacterium Tuberculosis and Escherichia Coli Genomes Using Data Mining , 2000, Yeast.

[34]  Pedro Mendes,et al.  Emerging bioinformatics for the metabolome , 2002, Briefings Bioinform..

[35]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[36]  N. Deutz,et al.  Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry. , 1999, Analytical biochemistry.

[37]  Oliver Fiehn,et al.  Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks , 2001, Comparative and functional genomics.

[38]  R. Somerville,et al.  Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12 , 1992, Journal of bacteriology.

[39]  O. Fiehn,et al.  Metabolite profiling for plant functional genomics , 2000, Nature Biotechnology.

[40]  D. Kell,et al.  The Kyoto Encyclopedia of Genes and Genomes—KEGG , 2000, Yeast.

[41]  J. Lindon,et al.  'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. , 1999, Xenobiotica; the fate of foreign compounds in biological systems.

[42]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[43]  Peter D. Karp,et al.  Eco Cyc: encyclopedia of Escherichia coli genes and metabolism , 1999, Nucleic Acids Res..

[44]  C. Yanofsky,et al.  Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. , 1994, Microbiology.

[45]  K. van Dam,et al.  A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. , 1992, Analytical biochemistry.

[46]  Jerry D. Cohen,et al.  Differential inhibition of indole-3-acetic acid and tryptophan biosynthesis by indole analogues. I. Tryptophan dependent IAA biosynthesis , 2004, Plant Growth Regulation.

[47]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[48]  D. R. Causton,et al.  A Biologist's Advanced Mathematics , 1977 .

[49]  J. Lindon,et al.  Characterization of Metabolites in IntactStreptomyces citricolorCulture Supernatants Using High-Resolution Nuclear Magnetic Resonance and Directly Coupled High-Pressure Liquid Chromatography–Nuclear Magnetic Resonance Spectroscopy☆ , 1999 .

[50]  Douglas B. Kell,et al.  A DRASTIC (Diffuse Reflectance Absorbance Spectroscopy Taking in Chemometrics) approach for the rapid analysis of microbial fermentation products: Quantification of aristeromycin and neplanocin A in Streptomyces citricolor broths , 1998 .

[51]  Takashi Gojobori,et al.  Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Douglas B. Kell,et al.  Explanatory Analysis of the Metabolome Using Genetic Programming of Simple, Interpretable Rules , 2000, Genetic Programming and Evolvable Machines.

[53]  Royston Goodacre,et al.  Rapid analysis of microbial systems using vibrational spectroscopy and supervised learning methods: application to the discrimination between methicillin-resistant and methicillin-susceptible Staphy , 1998, Photonics West - Biomedical Optics.

[54]  D Weuster-Botz,et al.  Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities. , 2000, Biotechnology and bioengineering.

[55]  Athel Cornish-Bowden,et al.  From genome to cellular phenotype—a role for metabolic flux analysis? , 2000, Nature Biotechnology.

[56]  D. Kell,et al.  Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. , 2002, Biotechnology and bioengineering.

[57]  Nigel W. Hardy,et al.  Plant Metabolomics , 2002, The Plant Cell Online.

[58]  R. Takors,et al.  Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. , 2001, Analytical biochemistry.

[59]  D B Kell,et al.  Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. , 1998, Microbiology.

[60]  R. Cole Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications , 1997 .

[61]  D. Kell,et al.  Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification , 2002, Journal of the American Society for Mass Spectrometry.

[62]  C. Yanofsky Transcription Attenuation: Once Viewed as a Novel Regulatory Strategy , 2000, Journal of bacteriology.

[63]  T. Lee,et al.  Liquid chromatography/microspray mass spectrometry for bacterial investigations. , 1999, Rapid communications in mass spectrometry : RCM.

[64]  F. Blattner,et al.  Functional Genomics: Expression Analysis ofEscherichia coli Growing on Minimal and Rich Media , 1999, Journal of bacteriology.

[65]  J P Sarsero,et al.  Some novel transcription attenuation mechanisms used by bacteria. , 1996, Biochimie.

[66]  D B Kell,et al.  Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. , 2000, Analytical chemistry.

[67]  R. Goodacre,et al.  Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry. , 2003, Phytochemistry.

[68]  Mee-Jung Han,et al.  Proteome Analysis of Metabolically EngineeredEscherichia coli Producing Poly(3-Hydroxybutyrate) , 2000, Journal of bacteriology.

[69]  M. Warne,et al.  An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta , 2000, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.

[70]  Douglas B. Kell,et al.  Diffuse reflectance absorbance spectroscopy taking in chemometrics (DRASTIC). A hyperspectral FT-IR-based approach to rapid screening for metabolite overproduction , 1997 .

[71]  Douglas B. Kell,et al.  SNAPSHOTS OF SYSTEMS - METABOLIC CONTROL ANALYSIS AND BIOTECHNOLOGY , 1999 .

[72]  Jacquelyn S. Fetrow,et al.  Structural genomics and its importance for gene function analysis , 2000, Nature Biotechnology.

[73]  D. Kell,et al.  A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations , 2001, Nature Biotechnology.

[74]  P D Karp,et al.  Global properties of the metabolic map of Escherichia coli. , 2000, Genome research.

[75]  M. Jacob,et al.  Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. , 1997, Clinical chemistry.

[76]  D. Botstein,et al.  DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Douglas B. Kell,et al.  Characterisation of intact microorganisms using electrospray ionisation mass spectrometry , 1999 .

[78]  Dieter Naumann,et al.  FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells , 1995 .

[79]  T. Ferenci,et al.  Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. , 1999, Redox report : communications in free radical research.

[80]  Takeshi Mizuno,et al.  Transcriptome analysis of all two‐component regulatory system mutants of Escherichia coli K‐12 , 2002, Molecular microbiology.

[81]  D. Kell,et al.  Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. , 2002, The Analyst.

[82]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[83]  Monica Riley,et al.  Physiological genomics of Escherichia coli protein families. , 2002, Physiological genomics.

[84]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[85]  Gavin H. Thomas,et al.  Completing the E. coli proteome: a database of gene products characterised since the completion of the genome sequence , 1999, Bioinform..

[86]  C. Yanofsky,et al.  Partial revertants of tryptophan synthetase alpha chain active site mutant Asp60-->Asn. , 1993, The Journal of biological chemistry.

[87]  J. Nishihara,et al.  Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes , 2001, Proteomics.

[88]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[89]  Ajith V. KamathS,et al.  Characterization of the Tryptophanase Operon of Proteus vulgaris , 2001 .

[90]  H M Davey,et al.  Rapid analysis of high-dimensional bioprocesses using multivariate spectroscopies and advanced chemometrics. , 2000, Advances in biochemical engineering/biotechnology.

[91]  E. Prinsen,et al.  HPLC Linked Electrospray Tandem Mass Spectrometry: A Rapid and Reliable Method to Analyse Indole‐3‐Acetic Acid Metabolism in Bacteria , 1997 .

[92]  Ross D. King,et al.  Application of metabolomics to plant genotype discrimination using statistics and machine learning , 2002, ECCB.

[93]  Tetsuya Hayashi,et al.  Escherichia coli , 1983, CABI Compendium.

[94]  W. Chen,et al.  Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. , 2007, Electrophoresis.

[95]  M. Valcárcel,et al.  Automated flow system on-line to LC with postcolumn derivatisation for determination of sugars in carbohydrate-rich foods , 2000 .

[96]  I. Jolliffe Principal Component Analysis , 2002 .

[97]  T. Ferenci,et al.  Effect of Slow Growth on Metabolism of Escherichia coli, as Revealed by Global Metabolite Pool (“Metabolome”) Analysis , 1998, Journal of bacteriology.

[98]  B. Manly Multivariate Statistical Methods : A Primer , 1986 .

[99]  T. Smith,et al.  Functional genomics--bioinformatics is ready for the challenge. , 1998, Trends in genetics : TIG.

[100]  R. Onodera,et al.  Tryptophan biosynthesis and production of other related compounds from indolepyruvic acid by mixed ruminal bacteria, protozoa, and their mixture in vitro. , 1999, The Journal of general and applied microbiology.

[101]  K. Shimizu,et al.  Proteome analysis of a temperature-inducible recombinant Escherichia coli for poly-beta-hydroxybutyrate production. , 2001, Journal of bioscience and bioengineering.

[102]  N. Noisommit-Rizzi,et al.  Optimized analysis of intracellular adenosine and guanosine phosphates in Escherichia coli. , 1999, Analytical biochemistry.

[103]  O. Fiehn,et al.  Integrated studies on plant biology using multiparallel techniques. , 2001, Current opinion in biotechnology.

[104]  S. Gaskell Electrospray: Principles and Practice , 1997 .

[105]  B O Palsson,et al.  Metabolic modeling of microbial strains in silico. , 2001, Trends in biochemical sciences.

[106]  C. Jacq,et al.  Transcriptomes, transcription activators and microarrays , 2001, FEBS letters.

[107]  D. Featherstone,et al.  Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[108]  K. Dam,et al.  A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. , 1992 .

[109]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[110]  Amanda Clare,et al.  Machine learning of functional class from phenotype data , 2002, Bioinform..

[111]  C. Yanofsky,et al.  Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift , 1994, Journal of bacteriology.

[112]  D. Kell,et al.  Noninvasive, On-Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using Dispersive Raman Spectroscopy and Chemometrics , 1999 .

[113]  Royston Goodacre,et al.  Evolutionary computation for the interpretation of metabolomic data. , 2003 .

[114]  R. Brent,et al.  Genomic Biology , 2000, Cell.

[115]  Royston Goodacre,et al.  Contribution of pyrolysis-mass spectrometry (Py-MS) to authenticity testing of honey , 2001 .

[116]  C. Burge,et al.  Chipping away at the transcriptome , 2001, Nature Genetics.

[117]  Douglas B. Kell,et al.  Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry , 1997 .