Generalized Optimal Step-Size for Blind Multichannel LMS System Identification

The choice of step-size in adaptive blind channel identification using the multichannel least mean squares (MCLMS) algorithm is critical and controls its convergence rate, stability, and sensitivity to noise. In this letter, we derive the expression for an optimal step-size in the Wiener sense and investigate its properties. An implementation technique for the Wiener solution of the self-adaptive step-size is presented, and it is shown that significant performance improvements are obtained compared to existing approaches in the presence of noise

[1]  Sharon Gannot Subspace methods for multi microphone speech dereverberation , 2001 .

[2]  Michail K. Tsatsanis,et al.  Blind channel estimation for long code multiuser CDMA systems , 2000, IEEE Trans. Signal Process..

[3]  Richard W. Harris,et al.  A variable step (VS) adaptive filter algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  Jacob Benesty,et al.  Optimal step size of the adaptive multichannel LMS algorithm for blind SIMO identification , 2005, IEEE Signal Processing Letters.

[5]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[6]  Marc Moonen,et al.  Subspace Methods for Multimicrophone Speech Dereverberation , 2003, EURASIP J. Adv. Signal Process..

[7]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[8]  M. Sondhi,et al.  On the evaluation of estimated impulse responses , 1998, IEEE Signal Processing Letters.

[9]  Kjetil F. Kaaresen,et al.  Multichannel blind deconvolution of seismic signals , 1998 .

[10]  Tyseer Aboulnasr,et al.  A robust variable step-size LMS-type algorithm: analysis and simulations , 1997, IEEE Trans. Signal Process..

[11]  L. Tong,et al.  Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.

[12]  Jacob Benesty,et al.  Adaptive multi-channel least mean square and Newton algorithms for blind channel identification , 2002, Signal Process..

[13]  Jacob Benesty,et al.  A class of frequency-domain adaptive approaches to blind multichannel identification , 2003, IEEE Trans. Signal Process..