Rock glacier dynamics : implications from high-resolution measurements of surface velocity fields

Recent high-resolution measurements of surface velocity fields using terrestrial, airand spaceborne methods have deepened insight into the dynamics of rock glaciers. Here, we compare selected studies on surface velocity fields in order to identify basic processes involved in the development of rock glacier surfaces. The evolution of rock glacier geometry is shown to be a function of mass advection, 3-dimensional straining, and thaw settlement or frost heave, respectively. All of these processes can reach the same order of magnitude. Available studies revealed creep fields to be highly coherent in space, clearly pointing to the presence of stresstransferring ice in the ground. The magnitude and type of dynamic processes reflect a high thermally-induced inertia of the creeping mountain permafrost. Systematic globally distributed monitoring series are identified as a major requirement for future research. Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7

[1]  W. T. Pfeffer,et al.  Rock glacier dynamics and paleoclimatic implications , 1999 .

[2]  Helmut Rott,et al.  Analysis of mass movements in alpine terrain by means of SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[3]  E. Baltsavias,et al.  Digital Surface Modelling by Airborne Laser Scanning and Digital Photogrammetry for Glacier Monitoring , 2001 .

[4]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[5]  V. Kaufmann GEOMORPHOMETRIC MONITORING OF ACTIVE ROCK GLACIERS IN THE AUSTRIAN ALPS , 1996 .

[6]  Dan Smith,et al.  Movement of King's Throne rock glacier, Mount Rae area, Canadian Rocky Mountains , 1999 .

[7]  M. Hoelzle,et al.  Ten years after the drilling through the permafrost of the active rock glacier Murtel, eastern Swiss Alps : Answered questions and new perspectives , 1998 .

[8]  K. Isaksen,et al.  Composition, flow and development of two tongue‐shaped rock glaciers in the permafrost of Svalbard , 2000 .

[9]  Viktor Kaufmann,et al.  Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs; two case studies in the Austrian Alps , 2003 .

[10]  A. Kääb,et al.  Towards a palaeoclimatic model of rock-glacier formation in the Swiss Alps , 2000, Annals of Glaciology.

[11]  J. L. Sollid,et al.  Rock glaciers on Prins Karls Forland, Svalbard. I: internal structure, flow velocity and morphology , 1998 .

[12]  W. Haeberli,et al.  Creep of mountain permafrost:internal structure and flow of Alpine rock glaciers. , 1985 .

[13]  L. Dyke,et al.  Decadal and millennial velocities of rock glaciers, Selwyn Mountains, Canada , 1998 .

[14]  Andreas Kääb,et al.  Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps , 1997 .

[15]  A. Kääb,et al.  SURFACE DEFORMATION OF CREEPING MOUNTAIN PERMAFROST. PHOTOGRAMMETRIC INVESTIGATIONS ON ROCK GLACIER MURTÈL, SWISS ALPS. , 1998 .

[16]  Helmut Rott,et al.  Feasibility of DINSAR for mapping complex motion fields of alpine ice- and rock-glaciers , 2002 .

[17]  Andreas Kääb,et al.  Evolution of a High-Mountain Thermokarst Lake in the Swiss Alps , 2001 .

[18]  Andreas Kääb,et al.  Geometry and dynamics of two lobe-shaped rock glaciers in the permafrost of Svalbard , 2002 .

[19]  K. Krainer,et al.  Reichenkar rock glacier: a glacier derived debris-ice system in the western Stubai Alps, Austria , 2000 .

[20]  L. W. Kenyi Measuring rock glacier surface deformation using SAR interferometry , 2002 .

[21]  Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtèl-Corvatsch, Swiss Alps : geomorphological and glaciological implications , 1999 .

[22]  Andreas Kääb,et al.  Photogrammetry for early recognition of high mountain hazards: New techniques and applications , 2000 .

[23]  V. Kaufmann DEFORMATION ANALYSIS OF THE DOESEN ROCK GLACIER ( AUSTRIA ) , 2022 .