A hysteresis compensation method of piezoelectric actuator: Model, identification and control

A major deficiency of piezoelectric actuators is that their open-loop control accuracy is seriously limited by hysteresis. In this paper, a novel mathematical model is proposed to describe hysteresis precisely. Based on the hysteresis model, an adaptive inverse control approach is presented for reducing hysteresis. The weights of the main hysteresis loop are identified by using least mean square (LMS) algorithm. The realization of an inverse feedforward controller for the linearization of a piezoelectric actuator is formulated. Experiments were performed on a micro-positioning system driven by piezoelectric actuators. The experimental results demonstrate that the positioning precision is noticeably improved in open-loop operation compared to the conventional open-loop control without any compensation.

[1]  Dave F. Farson,et al.  Design of a waveform tracking system for a piezoelectric actuator , 2008 .

[2]  S. Li-ning,et al.  Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .

[3]  Kok Kiong Tan,et al.  Design, Modeling, and Control of Piezoelectric Actuators for Intracytoplasmic Sperm Injection , 2007, IEEE Transactions on Control Systems Technology.

[4]  Bijan Shirinzadeh,et al.  Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation , 2008 .

[5]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[6]  Dimitris C. Lagoudas,et al.  Adaptive Hysteresis Model for Model Reference Control with Actuator Hysteresis , 2000 .

[7]  Faa-Jeng Lin,et al.  An adaptive recurrent radial basis function network tracking controller for a two-dimensional piezo-positioning stage , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[8]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[9]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[10]  Gary P. Maul,et al.  Piezo actuated vibratory feeding with vibration control , 2007 .

[11]  D. D. Gajski Arrays for generating arbitrary mask vectors , 1975 .

[12]  Hartmut Janocha,et al.  Compensation of hysteresis in solid-state actuators , 1995 .

[13]  Jung-Han Kim,et al.  An impact force compensation algorithm based on a piezo force sensor for wire bonding processes , 2008 .

[14]  W. Ni,et al.  Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry , 2005 .

[15]  A. Tzes,et al.  Design of a robust PID-control switching scheme for an electrostatic micro-actuator , 2008 .

[16]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[17]  Sung Wook Park,et al.  Effect of Injector Type on Fuel-Air Mixture Formation of High-Speed Diesel Sprays , 2006 .

[18]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[19]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[20]  Enrico Fedrigo,et al.  High performance adaptive optics system with fine tip/tilt control , 2009 .

[21]  Wen-Yuh Jywe,et al.  Precision tracking control of a piezoelectric-actuated system , 2008 .

[22]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[23]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[24]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[25]  H. Janocha,et al.  Adaptive inverse control of piezoelectric actuators with hysteresis operators , 1999, 1999 European Control Conference (ECC).