Characterization of spore forming Bacilli isolated from the human gastrointestinal tract

Aims:  To isolate and characterize spore‐former bacteria able to colonize the human gastrointestinal tract (GIT).

[1]  R. L. La Ragione,et al.  Immunostimulatory activity of Bacillus spores. , 2008, FEMS immunology and medical microbiology.

[2]  Ashlee M Earl,et al.  Ecology and genomics of Bacillus subtilis. , 2008, Trends in microbiology.

[3]  A. Henriques,et al.  Structure, assembly, and function of the spore surface layers. , 2007, Annual review of microbiology.

[4]  J. Alverdy,et al.  The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. , 2007, Cell host & microbe.

[5]  Emilia M F Mauriello,et al.  Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. , 2007, Vaccine.

[6]  S. Cutting,et al.  Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. , 2007, Vaccine.

[7]  Roberto Kolter,et al.  Bacillus subtilis Genome Diversity , 2006, Journal of bacteriology.

[8]  E. Ricca,et al.  Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. , 2006, Research in microbiology.

[9]  A. Henriques,et al.  The Intestinal Life Cycle of Bacillus subtilis and Close Relatives , 2006, Journal of bacteriology.

[10]  S. Cutting,et al.  The use of bacterial spore formers as probiotics. , 2005, FEMS microbiology reviews.

[11]  M. De Felice,et al.  Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. , 2005, Research in microbiology.

[12]  A. Fouet,et al.  Genetic analysis of Bacillus anthracis Sap S-layer protein crystallization domain. , 2005, Microbiology.

[13]  M. Woodward,et al.  Screening for Bacillus Isolates in the Broiler Gastrointestinal Tract , 2005, Applied and Environmental Microbiology.

[14]  S. Séror,et al.  Comparative Analysis of the Development of Swarming Communities of Bacillus subtilis 168 and a Natural Wild Type: Critical Effects of Surfactin and the Composition of the Medium , 2005, Journal of bacteriology.

[15]  Dominik Rünzler,et al.  The three S‐layer‐like homology motifs of the S‐layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer , 2004, Molecular microbiology.

[16]  A. Sloma,et al.  Extracellular Proteolytic Activity Plays a Central Role in Swarming Motility in Bacillus subtilis , 2004, Journal of bacteriology.

[17]  S. Séror,et al.  Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. , 2004, Microbiology.

[18]  A. Henriques,et al.  Characterization of Bacillus Probiotics Available for Human Use , 2004, Applied and Environmental Microbiology.

[19]  Emilia M F Mauriello,et al.  Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. , 2004, Vaccine.

[20]  N. Youssef,et al.  Comparison of methods to detect biosurfactant production by diverse microorganisms. , 2004, Journal of microbiological methods.

[21]  A. Driks,et al.  Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire1 , 2004, The Journal of Immunology.

[22]  R. Losick,et al.  A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions , 2004, Molecular and General Genetics MGG.

[23]  Susanna K. P. Lau,et al.  Usefulness of the MicroSeq 500 16S Ribosomal DNA-Based Bacterial Identification System for Identification of Clinically Significant Bacterial Isolates with Ambiguous Biochemical Profiles , 2003, Journal of Clinical Microbiology.

[24]  N. Fairweather,et al.  Bacterial Spores as Vaccine Vehicles , 2003, Infection and Immunity.

[25]  P. E. Granum,et al.  The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. , 2002, FEMS microbiology letters.

[26]  Christophe Nguyen-The,et al.  Enterotoxigenic Profiles of Food-Poisoning and Food-Borne Bacillus cereus Strains , 2002, Journal of Clinical Microbiology.

[27]  J. McKillip,et al.  Enterotoxin Production in Natural Isolates of Bacillaceae outside the Bacillus cereus Group , 2002, Applied and Environmental Microbiology.

[28]  S. Cutting,et al.  Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract , 2002, Applied and Environmental Microbiology.

[29]  R. Isticato,et al.  Surface Display of Recombinant Proteins on Bacillus subtilis Spores , 2001, Journal of bacteriology.

[30]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Ricca,et al.  Characterization of Bacillus Species Used for Oral Bacteriotherapy and Bacterioprophylaxis of Gastrointestinal Disorders , 2000, Applied and Environmental Microbiology.

[32]  P. Wakeley,et al.  Characterization of Two BacillusProbiotics , 1999, Applied and Environmental Microbiology.

[33]  M. Nakano,et al.  Anaerobic growth of a "strict aerobe" (Bacillus subtilis). , 1998, Annual review of microbiology.

[34]  M. De Felice,et al.  Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus , 1993, Applied and environmental microbiology.