Parameter dependences of convection-driven dynamos in rotating spherical fluid shells

For the understanding of planetary and stellar dynamos, an overview of the major parameter dependences of convection driven dynamos in rotating spherical fluid shells is desirable. Although the computationally accessible parameter space is limited, earlier work is extended with emphasis on higher Prandtl numbers and uniform heat flux condition at the outer boundary. The transition from dynamos dominated by non-axisymmetric components of the magnetic field to those dominated by the axisymmetric components depends on the magnetic Prandtl number as well as on the ordinary Prandtl number for higher values of the rotation parameter τ. The dependence of the transition on the latter parameter is also discussed. A variety of oscillating dynamos is presented and interpreted in terms of dynamo waves, standing oscillation or modified relaxation oscillations.

[1]  Paul H. Roberts,et al.  Kinematic dynamo models , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  Jan Olof Stenflo,et al.  Periodic oscillations in the north-south asymmetry of the solar magnetic field , 2004 .

[3]  U. Christensen,et al.  Mean-field view on rotating magnetoconvection and a geodynamo model , 2005 .

[4]  F. Busse,et al.  Finite-amplitude convection in rotating spherical fluid shells , 1997, Journal of Fluid Mechanics.

[5]  G. Glatzmaier,et al.  A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle , 1995 .

[6]  F. Busse,et al.  Inertial convection in rotating fluid spheres , 2004, Journal of Fluid Mechanics.

[7]  F. Busse Convective flows in rapidly rotating spheres and their dynamo action , 2002 .

[8]  Friedrich H. Busse,et al.  Thermal instabilities in rapidly rotating systems , 1970, Journal of Fluid Mechanics.

[9]  F. Busse,et al.  On Convection Driven Dynamos in Rotating Spherical Shells , 1998 .

[10]  D. Hughes,et al.  Fluid Dynamics and Dynamos in Astrophysics and Geophysics , 2005 .

[11]  F. Busse,et al.  12 Convection in rotating spherical fluid shells and its dynamo states , 2004 .

[12]  F. Busse,et al.  Buoyancy Driven Convection in Rotating Spherical Shells and its Dynamo Action , 2002 .

[13]  F. H. Busse,et al.  Patterns of convection in rotating spherical shells , 2003, 0906.1290.

[14]  Ulrich R. Christensen,et al.  The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow , 2002 .

[15]  F. Busse,et al.  Regular and chaotic spherical dynamos , 2000 .

[16]  Ephraim M Sparrow,et al.  Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile , 1964, Journal of Fluid Mechanics.

[17]  F. Busse,et al.  Dynamics of convection and dynamos in rotating spherical fluid shells , 2000 .

[18]  U. R. Christensen,et al.  Zonal flow driven by strongly supercritical convection in rotating spherical shells , 2002, Journal of Fluid Mechanics.

[19]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[20]  Ulrich R. Christensen,et al.  Numerical modelling of the geodynamo: a systematic parameter study , 1999 .

[21]  J. Aubert,et al.  Axial vs. equatorial dipolar dynamo models with implications for planetary magnetic fields , 2004 .

[22]  F. Busse,et al.  Convection in Rotating Spherical Fluid Shells and its Dynamo Action , 2005 .

[23]  F. Busse,et al.  Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells , 2005, Journal of Fluid Mechanics.

[24]  F. Busse,et al.  Thermal convection in rotating spherical shells , 1997 .

[25]  A. Tilgner,et al.  Spectral methods for the simulation of incompressible flows in spherical shells , 1999 .

[26]  Carsten Kutzner,et al.  From stable dipolar towards reversing numerical dynamos , 2002 .

[27]  U. Christensen,et al.  effects of driving mechanisms in geodynamo models , 2000 .

[28]  F. Busse,et al.  Convection-driven quadrupolar dynamos in rotating spherical shells. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  F. Busse,et al.  Convection in rotating spherical shells and its dynamo action , 2003 .

[30]  H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids , 1978 .

[31]  Busse,et al.  Hemispherical dynamos generated by convection in rotating spherical shells , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  E. Parker Hydromagnetic Dynamo Models , 1955 .