Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation

By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the ‘Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin.

[1]  Yufeng Yao,et al.  SecReT6: a web-based resource for type VI secretion systems found in bacteria. , 2015, Environmental microbiology.

[2]  D. Queller,et al.  ESTIMATING RELATEDNESS USING GENETIC MARKERS , 1989, Evolution; international journal of organic evolution.

[3]  A. Griffin,et al.  Cooperation and conflict in quorum-sensing bacterial populations , 2007, Nature.

[4]  S. Pukatzki,et al.  Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 Is Inhibited by the Antitoxin TsaB* , 2013, The Journal of Biological Chemistry.

[5]  C. Fuqua,et al.  Bacterial competition: surviving and thriving in the microbial jungle , 2010, Nature Reviews Microbiology.

[6]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[7]  M. Travisano,et al.  Strategies of microbial cheater control. , 2004, Trends in microbiology.

[8]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[9]  J. Gore,et al.  Cellular cooperation: insights from microbes. , 2013, Trends in cell biology.

[10]  J. Strassmann,et al.  Kin discrimination and cooperation in microbes. , 2011, Annual review of microbiology.

[11]  K. Foster,et al.  Evolutionary limits to cooperation in microbial communities , 2014, Proceedings of the National Academy of Sciences.

[12]  M. Rietkerk,et al.  Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. , 2016, Physics of life reviews.

[13]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[14]  Fitnat H. Yildiz,et al.  Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton , 2016, Applied and Environmental Microbiology.

[15]  Benjamin Kerr,et al.  Life cycles, fitness decoupling and the evolution of multicellularity , 2014, Nature.

[16]  M. Cates,et al.  Scalar φ4 field theory for active-particle phase separation , 2013, Nature Communications.

[17]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[18]  D. Schifferli,et al.  Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. , 1998, Gene.

[19]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[20]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[21]  J. Pepper,et al.  THEORY FOR THE EVOLUTION OF DIFFUSIBLE EXTERNAL GOODS , 2010, Evolution; international journal of organic evolution.

[22]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[23]  Wenying Shou,et al.  Spatial self-organization favors heterotypic cooperation over cheating , 2013, eLife.

[24]  Thomas Speck,et al.  Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. , 2013, Physical review letters.

[25]  J. Mekalanos,et al.  A view to a kill: the bacterial type VI secretion system. , 2014, Cell host & microbe.

[26]  Cyrus Chothia,et al.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny , 2008, Nucleic Acids Res..

[27]  Michael Doebeli,et al.  A simple and general explanation for the evolution of altruism , 2009, Proceedings of the Royal Society B: Biological Sciences.

[28]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[29]  M. Blokesch,et al.  The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer , 2015, Science.

[30]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[31]  S. Kanemaki,et al.  A Theory for the , 1986 .

[32]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition , 2014, Nature Communications.

[33]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[34]  Jarrod Had MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package , 2010 .

[35]  Sam P. Brown,et al.  Horizontal Gene Transfer of the Secretome Drives the Evolution of Bacterial Cooperation and Virulence , 2009, Current Biology.

[36]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[37]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[38]  Vlad I. Morariu,et al.  Expression , 2015, Principles of Molecular Virology.

[39]  Sam P. Brown,et al.  Metabolic and Demographic Feedbacks Shape the Emergent Spatial Structure and Function of Microbial Communities , 2013, PLoS Comput. Biol..

[40]  W. Hamilton Geometry for the selfish herd. , 1971, Journal of theoretical biology.

[41]  L. Chao,et al.  Structured habitats and the evolution of anticompetitor toxins in bacteria. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Matthew R. Laird,et al.  PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures , 2015, Nucleic Acids Res..

[43]  S. Allen,et al.  Ground state structures in ordered B.C.C. ternary alloys with second-neighbor interactions , 1992 .

[44]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system displays antimicrobial properties , 2010, Proceedings of the National Academy of Sciences.

[45]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E. Greenberg,et al.  Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants , 2016, eLife.

[47]  Freya Harrison,et al.  Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa , 2009, Proceedings of the Royal Society B: Biological Sciences.

[48]  J. Strassmann,et al.  Fine‐scale spatial ecology drives kin selection relatedness among cooperating amoebae , 2016, Evolution; international journal of organic evolution.

[49]  G. J. Velicer,et al.  Positively Frequency-Dependent Interference Competition Maintains Diversity and Pervades a Natural Population of Cooperative Microbes , 2015, Current Biology.

[50]  Shinichi Nakagawa,et al.  A general and simple method for obtaining R2 from generalized linear mixed‐effects models , 2013 .

[51]  S. B. Peterson,et al.  Type VI secretion system effectors: poisons with a purpose , 2014, Nature Reviews Microbiology.

[52]  Knut Drescher,et al.  Spatial structure, cooperation and competition in biofilms , 2016, Nature Reviews Microbiology.

[53]  J. Prost,et al.  Homeostatic Fluctuations of a Tissue Surface. , 2015, Physical review letters.

[54]  Frédéric Boyer,et al.  Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? , 2009, BMC Genomics.

[55]  Vijay Narayan,et al.  Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic , 2007, Science.

[56]  Z. Dogic,et al.  Cilia-Like Beating of Active Microtubule Bundles , 2011, Science.

[57]  C. Tarr,et al.  Diversity of Clinical and Environmental Isolates of Vibrio cholerae in Natural Transformation and Contact-Dependent Bacterial Killing Indicative of Type VI Secretion System Activity , 2016, Applied and Environmental Microbiology.

[58]  M. Rietkerk,et al.  Bridging physics and biology: Reply to comments on "Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns". , 2016, Physics of life reviews.

[59]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[60]  David Bruce Borenstein,et al.  Established Microbial Colonies Can Survive Type VI Secretion Assault , 2015, PLoS Comput. Biol..

[61]  A. Griffin,et al.  Cooperation and competition in pathogenic bacteria , 2004, Nature.

[62]  J. Tailleur,et al.  Pattern formation in self-propelled particles with density-dependent motility. , 2012, Physical review letters.

[63]  Phase-field modeling of dynamical interface phenomena in fluids , 2004 .

[64]  Johan van de Koppel,et al.  Phase separation explains a new class of self-organized spatial patterns in ecological systems , 2013, Proceedings of the National Academy of Sciences.

[65]  L. Buss,et al.  Alleopathy and spatial competition among coral reef invertebrates. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Sara Mitri,et al.  The Ecology and Evolution of Microbial Competition. , 2016, Trends in microbiology.

[67]  Sharon C Glotzer,et al.  Shape control and compartmentalization in active colloidal cells , 2015, Proceedings of the National Academy of Sciences.

[68]  S. Pukatzki,et al.  Constitutive Type VI Secretion System Expression Gives Vibrio cholerae Intra- and Interspecific Competitive Advantages , 2012, PloS one.

[69]  J. Gore,et al.  Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations , 2013, PLoS biology.

[70]  M Cristina Marchetti,et al.  Athermal phase separation of self-propelled particles with no alignment. , 2012, Physical review letters.

[71]  Simon Gilroy,et al.  Allelopathy and Exotic Plant Invasion: From Molecules and Genes to Species Interactions , 2003, Science.

[72]  J. Strassmann,et al.  Structured growth and genetic drift raise relatedness in the social amoeba Dictyostelium discoideum , 2012, Biology Letters.

[73]  A. Griffin,et al.  Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. , 2007, FEMS Microbiology Ecology.

[74]  B. Bassler,et al.  A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms , 2011, Proceedings of the National Academy of Sciences.

[75]  H. Stone,et al.  Solutions to the Public Goods Dilemma in Bacterial Biofilms , 2013, Current Biology.

[76]  Jarrod D. Hadfield,et al.  MCMC methods for multi-response generalized linear mixed models , 2010 .

[77]  Richard A. Moore,et al.  Microbial Herd Protection Mediated by Antagonistic Interaction in Polymicrobial Communities , 2016, Applied and Environmental Microbiology.

[78]  J. Mekalanos,et al.  Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae , 2013, Proceedings of the National Academy of Sciences.

[79]  D. Weitz,et al.  Gelation of particles with short-range attraction , 2008, Nature.

[80]  R. Taylor,et al.  Positive selection vectors for allelic exchange. , 1996, Gene.

[81]  M E Cates,et al.  Arrested phase separation in reproducing bacteria creates a generic route to pattern formation , 2010, Proceedings of the National Academy of Sciences.

[82]  Ilpo Vattulainen,et al.  Novel Methods in Soft Matter Simulations , 2013 .

[83]  B. Bassler,et al.  Cutting through the complexity of cell collectives , 2013, Proceedings of the Royal Society B: Biological Sciences.

[84]  M. Vos,et al.  Isolation by Distance in the Spore-Forming Soil Bacterium Myxococcus xanthus , 2008, Current Biology.

[85]  Silke Henkes,et al.  Active jamming: self-propelled soft particles at high density. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Keenan M. L. Mack,et al.  Spatial Population Expansion Promotes the Evolution of Cooperation in an Experimental Prisoner’s Dilemma , 2013, Current Biology.

[87]  J. Gore,et al.  Understanding microbial cooperation. , 2012, Journal of theoretical biology.

[88]  E. Santillana,et al.  The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system. , 2016, Acta crystallographica. Section D, Structural biology.