An application of particle swarm optimization algorithm to clustering analysis

Particle swarm optimization algorithm (PSOA), which maintains a population of particles, where each particle represents a potential solution to an optimization problem, is a population-based stochastic search process. This study intends to integrate PSOA with K-means to cluster data. It is shown that PSOA can be employed to find the centroids of a user-specified number of clusters. The proposed PSOA is evaluated using four data sets, and compared to the performance of some other PSOA-based methods and K-means method. Computational results show that the proposed method has much potential. A real-world problem for order clustering also illustrates that the proposed method is quite promising.

[1]  Chunguang Zhou,et al.  Particle swarm optimization for traveling salesman problem , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[2]  R. J. Kuo,et al.  Application of ant K-means on clustering analysis , 2005 .

[3]  Ching-Yi Chen,et al.  Particle swarm optimization algorithm and its application to clustering analysis , 2004, 2012 Proceedings of 17th Conference on Electrical Power Distribution.

[4]  R. J. Kuo,et al.  Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation , 2006, Expert Syst. Appl..

[5]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[6]  Donald E. Brown,et al.  A practical application of simulated annealing to clustering , 1990, Pattern Recognit..

[7]  Habtom W. Ressom,et al.  Adaptive double self-organizing maps for clustering gene expression profiles , 2003, Neural Networks.

[8]  J. Hair Multivariate data analysis : a global perspective , 2010 .

[9]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[10]  S. Grossberg,et al.  ART 2: self-organization of stable category recognition codes for analog input patterns. , 1987, Applied optics.

[11]  Zhang Wei,et al.  A new hybrid optimization algorithm for the job-shop scheduling problem , 2004, Proceedings of the 2004 American Control Conference.

[12]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[13]  R. J. Kuo,et al.  Integration of self-organizing feature map and K-means algorithm for market segmentation , 2002, Comput. Oper. Res..

[14]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[15]  Amir B. Geva,et al.  Hierarchical unsupervised fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..

[16]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[17]  Aidong Zhang,et al.  WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases , 1998, VLDB.

[18]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Hujun Yin,et al.  ViSOM - a novel method for multivariate data projection and structure visualization , 2002, IEEE Trans. Neural Networks.

[20]  James C. Bezdek,et al.  Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm , 1992, IEEE Trans. Neural Networks.

[21]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[22]  Russell C. Eberhart,et al.  Gene clustering using self-organizing maps and particle swarm optimization , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[23]  K. Chang,et al.  Integration of Self-Organizing Feature Maps and Genetic-Algorithm-Based Clustering Method for Market Segmentation , 2004, J. Organ. Comput. Electron. Commer..

[24]  Yu Li,et al.  Particle swarm optimisation for evolving artificial neural network , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[25]  Ping Chen,et al.  Using the fractal dimension to cluster datasets , 2000, KDD '00.

[26]  R. J. Kuo,et al.  Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce , 2005, Decis. Support Syst..

[27]  Padhraic Smyth,et al.  Model selection for probabilistic clustering using cross-validated likelihood , 2000, Stat. Comput..

[28]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[29]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[30]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[31]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[32]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[33]  Dipti Srinivasan,et al.  Particle swarm optimization-based approach for generator maintenance scheduling , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[34]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[35]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[36]  Wu Bin,et al.  Particle Swarm Optimization method for Vehicle Routing Problem , 2004, Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788).

[37]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[38]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[39]  J. Salerno,et al.  Using the particle swarm optimization technique to train a recurrent neural model , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[40]  Khaled S. Al-Sultan,et al.  A Tabu search approach to the clustering problem , 1995, Pattern Recognit..