Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials

We apply universality limits to asymptotics of spacing of zeros x"k"n of orthogonal polynomials, for weights with compact support and for exponential weights. A typical result islimn->~x"k"n-x"k"+"1","nK@?"nx"k"n,x"k"n=1under minimal hypotheses on the weight, with K@?"n denoting a normalized reproducing kernel. Moreover, for exponential weights, we derive asymptotics for the differentiated kernels:K"n^r^,^sx,x=@?k=0n-1p"k^rxp"k^sx.

[1]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[2]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[3]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[4]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[5]  G. Freud On Markov-Bernstein-type inequalities and their applications , 1977 .

[6]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[7]  B. Simon Fine Structure of the Zeros of Orthogonal Polynomials: A Review , 2007 .

[8]  Barry Simon,et al.  Fine structure of the zeros of orthogonal polynomials, II. OPUC with competing exponential decay , 2004, Journal of Approximation Theory.

[9]  D. Lubinsky,et al.  Universality Limits for Exponential Weights , 2009 .

[10]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[11]  FINE STRUCTURE OF THE ZEROS OF ORTHOGONAL POLYNOMIALS, I. A TALE OF TWO PICTURES , 2004, math/0411391.

[12]  Vilmos Totik,et al.  Orthogonal polynomials: their growth relative to their sums , 1991 .

[13]  Hrushikesh Narhar Mhaskar,et al.  Introduction to the theory of weighted polynomial approximation , 1997, Series in approximations and decompositions.

[14]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[15]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[16]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[17]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[18]  P. D. Miller,et al.  Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles , 2002 .

[19]  P. Nevai,et al.  Orthogonal polynomials, measures and recurrence relations , 1986 .

[20]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[21]  A NEW APPROACH TO UNIVERSALITY LIMITS AT THE EDGE OF THE SPECTRUM , 2008 .

[22]  Y. Last,et al.  Fine structure of the zeros of orthogonal polynomials IV: A priori bounds and clock behavior , 2008 .

[23]  Riemann-Hilbert Methods in the Theory of Orthogonal Polynomials , 2006, math/0603309.

[24]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.