Isospin dependence of the microscopic JLM model

[1]  S. Karataglidis,et al.  Alternative evaluations of halos in nuclei , 1998, nucl-th/9811045.

[2]  K. Ishii,et al.  Isovector Part of Optical Potentials Studied through Analog Transitions in the (p, n) Reaction at 20 MeV , 2000 .

[3]  A. Musumarra,et al.  Inelastic proton scattering as a mean for the determination of neutron and proton matrix element ratios , 1999 .

[4]  Y. Suzuki,et al.  Structure of 6 He with an extended three-cluster model , 1999 .

[5]  Y. Blumenfeld,et al.  Charge-exchange reaction induced by 6He and nuclear densities , 1998 .

[6]  J. Al-Khalili,et al.  Few-body calculations of proton-(6),He-8 scattering , 1998 .

[7]  K. Ishii,et al.  Analog transitions in sd - and f -shell nuclei and the isovector part of optical potentials studied by the ( p , n ) reaction at 35 MeV , 1997 .

[8]  H. Toki,et al.  Revelation of thick neutron skins in nuclei , 1992 .

[9]  Shen,et al.  Collective doorway configurations in 49Ca through neutron scattering on 48Ca. , 1990, Physical review. C, Nuclear physics.

[10]  Walter,et al.  Optical model description of the neutron interaction with 116Sn and 120Sn over a wide energy range. , 1989, Physical review. C, Nuclear physics.

[11]  H. J. Gils,et al.  Experimental Methods for Studying Nuclear Density Distributions , 1989 .

[12]  T. Kobayashi,et al.  Measurement of interaction cross sections using isotope beams of Be and B and isospin dependence of the nuclear radii , 1988 .

[13]  G. Bertsch,et al.  REVIEW ARTICLE: The (p,n) reaction and the nucleon-nucleon force , 1987 .

[14]  Finlay,et al.  Microscopic optical model analysis of nucleon scattering from light nuclei. , 1985, Physical review. C, Nuclear physics.

[15]  Poppe,et al.  Test of microscopic optical model potentials for neutron elastic scattering at 14.6 MeV over a wide mass range. , 1985, Physical review. C, Nuclear physics.

[16]  S. Grimes,et al.  Analysis of (p,p), (p,n), and (n,n) scattering on the even tin isotopes using the Lane coupled equations , 1984 .

[17]  F. Dietrich,et al.  Microscopic and conventional optical model analysis of fast neutron scattering from /sup 54,56/Fe , 1983 .

[18]  G. Randers-Pehrson,et al.  Isospin dependence of the microscopic optical model for nucleon scattering , 1983 .

[19]  G. Hoffmann,et al.  0. 8 GeV p+/sup 208/Pb elastic scattering and the quantity. delta. r/sub n/p , 1980 .

[20]  S. Austin An Empirical Effective Interaction , 1980 .

[21]  R. Finlay,et al.  A global optical-model analysis of neutron elastic scattering data , 1979 .

[22]  R. Finlay,et al.  Excitation of low-lying collective states in /sup 40/Ca and /sup 208/Pb by inelastic neutron scattering , 1977 .

[23]  André Lejeune,et al.  Optical-model potential in finite nuclei from Reid's hard core interaction , 1977 .

[24]  B. Frois,et al.  High-momentum-transfer electron scattering from /sup 208/Pb. [q = 3. 7 fm/sup -1/] , 1977 .

[25]  D. Lind,et al.  Optical model analysis of quasielastic (p, n) reactions at 22.8 Mev☆ , 1975 .

[26]  D. M. Patterson,et al.  Microscopic description of isobaric-analog-state transitions induced by 25-, 35-, and 45-MeV protons , 1975 .

[27]  D. Lind,et al.  The (p,n) reaction to the isobaric analogue state of high-Z elements at 25.8 MeV , 1974 .

[28]  C. Maggiore,et al.  Proton Inelastic Scattering fromCa48 , 1972 .

[29]  G. Hoffmann,et al.  Coupled-channel calculations of the energy dependence of the (p,n) charge-exchange reaction , 1972 .

[30]  D. Lind,et al.  New (p,n) Reaction Studies at E p =23 MeV , 1971 .

[31]  A. Lane Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions , 1962 .