Variable selection in monotone single‐index models via the adaptive LASSO

We consider the problem of variable selection for monotone single-index models. A single-index model assumes that the expectation of the outcome is an unknown function of a linear combination of covariates. Assuming monotonicity of the unknown function is often reasonable and allows for more straightforward inference. We present an adaptive LASSO penalized least squares approach to estimating the index parameter and the unknown function in these models for continuous outcome. Monotone function estimates are achieved using the pooled adjacent violators algorithm, followed by kernel regression. In the iterative estimation process, a linear approximation to the unknown function is used, therefore reducing the situation to that of linear regression and allowing for the use of standard LASSO algorithms, such as coordinate descent. Results of a simulation study indicate that the proposed methods perform well under a variety of circumstances and that an assumption of monotonicity, when appropriate, noticeably improves performance. The proposed methods are applied to data from a randomized clinical trial for the treatment of a critical illness in the intensive care unit.

[1]  Hari Mukerjee,et al.  Monotone Nonparametric Regression , 1988 .

[2]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[3]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[4]  P. Hall,et al.  NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS , 2001 .

[5]  Runze Li,et al.  ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.

[6]  Xuming He,et al.  Monotone B-Spline Smoothing , 1998 .

[7]  Ker-Chau Li,et al.  Regression Analysis Under Link Violation , 1989 .

[8]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[9]  J. M. Taylor,et al.  Subgroup identification from randomized clinical trial data , 2011, Statistics in medicine.

[10]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[11]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .

[12]  W. Härdle,et al.  Semi-parametric estimation of partially linear single-index models , 2006 .

[13]  S. Lahiri,et al.  Bootstrapping Lasso Estimators , 2011 .

[14]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[15]  Hao Helen Zhang,et al.  ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.

[16]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[17]  S. Katz,et al.  12. Index of ADL. , 1976, Medical care.

[18]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[19]  J. M. Bremner,et al.  Statistical Inference under Restrictions , 1973 .

[20]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[21]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[22]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[23]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[24]  R. Tibshirani,et al.  The Monotone Smoothing of Scatterplots , 1984 .

[25]  Yingcun Xia,et al.  Variable selection for the single‐index model , 2007 .

[26]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .