The least squares mean of positive Hilbert–Schmidt operators
暂无分享,去创建一个
[1] R. Bhatia. Positive Definite Matrices , 2019, Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization.
[2] Jimmie D. Lawson,et al. Karcher means and Karcher equations of positive definite operators , 2014 .
[3] R. Karandikar,et al. Monotonicity of the matrix geometric mean , 2012 .
[4] Y. Lim,et al. Matrix power means and the Karcher mean , 2012 .
[5] Y. Lim,et al. Monotonic properties of the least squares mean , 2010, 1007.4792.
[6] G. Larotonda,et al. Manifolds of semi‐negative curvature , 2008, 0810.4562.
[7] G. Larotonda. Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators , 2007 .
[8] R. Bhatia,et al. Riemannian geometry and matrix geometric means , 2006 .
[9] Maher Moakher,et al. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..
[10] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[11] S. Lang. Fundamentals of differential geometry , 1998 .
[12] Jürgen Jost,et al. Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .
[13] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[14] Rajendra Bhatia,et al. The Riemannian Mean of Positive Matrices , 2013 .