Recent Progress and Prospects for Integer Factorisation Algorithms

The integer factorisation and discrete logarithm problems are of practical importance because of the widespread use of public key cryptosystems whose security depends on the presumed difficulty of solving these problems. This paper considers primarily the integer factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in part to Moore's law and in part to algorithmic improvements. It is now routine to factor 100-decimal digit numbers, and feasible to factor numbers of 155 decimal digits (512 bits). We outline several integer factorisation algorithms, consider their suitability for implementation on parallel machines, and give examples of their current capabilities. In particular, we consider the problem of parallel solution of the large, sparse linear systems which arise with the MPQS and NFS methods.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Jörg Zayer,et al.  Faktorisieren mit dem Number Field Sieve , 1995 .

[3]  H. Riesel Prime numbers and computer methods for factorization (2nd ed.) , 1994 .

[4]  R. Lehman Factoring large integers , 1974 .

[5]  B. Fagin,et al.  Discrete weighted transforms and large-integer arithmetic , 1994 .

[6]  R. Brent Number Theory and Cryptography: Parallel algorithms for integer factorisation , 1990 .

[7]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Peter L. Montgomery,et al.  A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.

[9]  Arjen K. Lenstra,et al.  Factoring With Two Large Primes , 1990, EUROCRYPT.

[10]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[11]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[13]  Richard P. Brent,et al.  Some Parallel Algorithms for Integer Factorisation , 1999, Euro-Par.

[14]  Richard P. Brent,et al.  Vector and Parallel Algorithms for Integer Factorisation , 1990 .

[15]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[16]  Peter Strazdins,et al.  Implementation of the BLAS level 3 and LINPACK Benchmark on the AP1000 , 1992 .

[17]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[18]  Brian Murphy,et al.  On Quadratic Polynomials for the Number Field Sieve , 1998, CATS.

[19]  Arjen K. Lenstra,et al.  A World Wide Number Field Sieve Factoring Record: On to 512 Bits , 1996, ASIACRYPT.

[20]  R. Marije Elkenbracht-Huizing A Multiple Polynominal General Number Field Sieve , 1996, ANTS.

[21]  Arjen K. Lenstra,et al.  Factorization of RSA-140 Using the Number Field Sieve , 1999, ASIACRYPT.

[22]  Jeffrey W. Smith,et al.  A Pipeline Architecture for Factoring Large Integers with the Quadratic Sieve Algorithm , 1988, SIAM J. Comput..

[23]  S. Lang,et al.  Elliptic Curves: Diophantine Analysis , 1978 .

[24]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[25]  Arjen K. Lenstra,et al.  Factoring by Electronic Mail , 1990, EUROCRYPT.

[26]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[27]  Carl Pomerance,et al.  A Tale of Two Sieves , 1998 .

[28]  Arjen K. Lenstra,et al.  The Magic Words are Squeamish Ossifrage , 1994, ASIACRYPT.

[29]  Herman J. J. te Riele,et al.  Factoring Integers with Large-Prime Variations of the Quadratic Sieve , 1996, Exp. Math..

[30]  Andrew M. Odlyzko,et al.  Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.

[31]  Carl Pomerance,et al.  The Quadratic Sieve Factoring Algorithm , 1985, EUROCRYPT.

[32]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.

[33]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  J. Pollard A monte carlo method for factorization , 1975 .

[35]  D. Chudnovsky,et al.  Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .

[36]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[37]  A. K. Lenstra,et al.  The factorization of the ninth Fermat number , 1993 .

[38]  Brian Murphy,et al.  Modelling the Yield of Number Field Sieve Polynominals , 1998, ANTS.

[39]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[40]  Richard P. Brent,et al.  Factorization of the tenth Fermat number , 1999, Math. Comput..

[41]  P. L. Montgomery,et al.  A survey of modern integer factorization algorithms , 1994 .

[42]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[43]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[44]  Robert D. Silverman The multiple polynomial quadratic sieve , 1987 .

[45]  Richard P. Brent,et al.  Factorization of the tenth and eleventh Fermat numbers , 1996 .

[46]  H. Riesel Prime numbers and computer methods for factorization , 1985 .

[47]  Peter L. Montgomery,et al.  Square roots of products of algebraic numbers , 1994 .

[48]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[49]  B. Murphy Polynomial Selection for the Number Field Sieve Integer Factorisation Algorithm , 1999 .

[50]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[51]  Dik Winter,et al.  Factoring with the quadratic sieve on large vector computers , 1989 .

[52]  Umesh V. Vazirani,et al.  Introduction to Special Section on Quantum Computation , 1997, SIAM J. Comput..