On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms

In this paper, an extension of the minimum cost flow (MCF) algorithm dealing with a sparse data grid, which allows the unwrapping of multitemporal differential synthetic aperture radar (SAR) interferograms for the generation of deformation time series, is presented. The proposed approach exploits both the spatial characteristics and the temporal relationships among multiple interferograms relevant to a properly chosen sequence. In particular, the presented solution involves two main steps: first of all, for each arc connecting neighboring pixels on the interferometric azimuth/range grid, the unwrapped phase gradients are estimated via the MCF technique applied in the temporal/perpendicular baseline plane. Following this step, these estimates are used as a starting point for the spatial-unwrapping operation implemented again via the MCF approach but carried out in the azimuth/range plane. The presented results, achieved on simulated and real European Remote Sensing satellite SAR data, confirm the effectiveness of the extended MCF unwrapping algorithm

[1]  D. Massonnet,et al.  Deflation of Mount Etna monitored by spaceborne radar interferometry , 1995, Nature.

[2]  Michele Manunta,et al.  A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[4]  P. Rosen,et al.  Surface Displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry , 1995, Science.

[5]  Mario Costantini,et al.  A three-dimensional phase unwrapping algorithm for processing of multitemporal SAR interferometric measurements , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[6]  Antonio Pepe,et al.  A space-time minimum cost flow phase unwrapping algorithm for the generation of DInSAR deformation time-series , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[7]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[8]  M. Costantini,et al.  A generalized phase unwrapping approach for sparse data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[9]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[10]  E. Rignot,et al.  Fast recession of a west antarctic glacier , 1998, Science.

[11]  Antonio Pepe,et al.  Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity , 2005 .

[12]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[13]  Riccardo Lanari,et al.  Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California , 2004 .

[14]  Betlem Rosich,et al.  REVIEW OF THE IMPACT OF ERS-2 PILOTING MODES ON THE SAR DOPPLER STABILITY , 2004 .

[15]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[16]  Stefania Usai,et al.  A least squares database approach for SAR interferometric data , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[19]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[20]  C. Werner,et al.  Interferometric point target analysis for deformation mapping , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[21]  M. Crosetto,et al.  Early detection and in-depth analysis of deformation phenomena by radar interferometry , 2005 .

[22]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..