Technology and Design Considerations for a Very-High-Speed Fiber-Optic Data Bus

The techology for very-high-speed fiber-optic data transmission is reviewed, and an assessment is made of the data rate limitations for a ring bus. Maximum data rates for single-channel transmission are estimated to he in the five-ten Gbit/s range, but bus capacity can be increased to 100 Gbits/s or higher with parallel interconnections or carrier-frequency multiplexing. A recirculating fiber loop is proposed as a buffer between the high data rate bus and terminals which operate at relatively low speeds. A bus terminal design based on this concept is suggested.

[1]  A. R. Goodwin,et al.  Direct modulation of double-heterostructure lasers at rates up to 1 Gbit/s , 1973 .

[2]  I Hatakeyama,et al.  Fusion splices for optical fibers by discharge heating. , 1978, Applied optics.

[3]  T. Kimura,et al.  2 Gbit/s optical transmission experiments at 1.3 μm with 44 km single-mode fibre , 1981 .

[4]  F. Kapron,et al.  RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES , 1970 .

[5]  Susumu Machida,et al.  Dispersion-free single-mode fibre transmission experiments up to 1.6 Gbit/s , 1979 .

[6]  Koichi Asatani,et al.  Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength. , 1978, Optics letters.

[7]  Nobuo Shimizu,et al.  Low-loss single-mode fibre connectors , 1979 .

[8]  Amnon Yariv,et al.  Monolithic integration of an injection laser and a metal semiconductor field effect transistor , 1979 .

[9]  A. C. Carter,et al.  Monolithic integration of optoelectronic, electronic and passive components in GaAlAs/GaAs multilayers , 1982 .

[10]  D. Krause,et al.  Optical transmission experiment at 1.12 Gbit/s using a graded-index fibre with a length of 1.652 km , 1977 .

[11]  Chinlon Lin,et al.  Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. , 1977, Applied optics.

[12]  K. Nawata,et al.  An 800 Mbit/s optical transmission experiment using a single-mode fiber , 1977, IEEE Journal of Quantum Electronics.

[13]  S. Eng,et al.  Optical fiber communication experiment at 5 Gbit/sec. , 1981, Applied optics.

[14]  Katsuyuki Utaka,et al.  GaInAsP/InP Integrated Twin-Guide Lasers with First-Order Distributed Bragg Reflectors at 1.3 µm Wavelength , 1980 .

[15]  S. T. Eng,et al.  8 Gbit/s optical transmission with t.j.s. GaAlAs laser and p-i-n detection , 1980 .

[16]  U. Koren,et al.  Monolithic integration of a very low threshold GaInAsP laser and metal-insulator-semiconductor field-effect transistor on semi-insulating InP , 1982 .

[17]  K. Nakano,et al.  III-V alloy heterostructure high speed avalanche photodiodes , 1979 .

[18]  A. Yariv,et al.  Integration of an injection laser with a Gunn oscillator on a semi‐insulating GaAs substrate , 1978 .

[19]  R. Alferness Guided-wave devices for optical communication , 1981 .

[20]  T. Sueta,et al.  High Speed Guided-Wave Optical Modulators , 1982 .

[21]  K. Lübke,et al.  High-bit-rate pulse regeneration and modulation of injection lasers with a planar Gunn device , 1979 .

[22]  Leonard George Cohen,et al.  Dispersion and bandwidth spectra in single-mode fibers , 1982 .

[23]  N. P. Economou,et al.  Fast compact optical waveguide switch modulator , 1981 .

[24]  Fumio Koyama,et al.  Single-wavelength operation of 1.53 μm gainasp/inp buried-heterostructure integrated twin-guide laser with distributed bragg reflector under direct modulation up to 1 ghz , 1981 .

[25]  Abraham Katzir,et al.  Room-temperature operation of GaAs Bragg-mirror lasers , 1976 .

[26]  Juichi Noda,et al.  Electro−optic intensity modulation in LiTaO3 ridge waveguide , 1975 .

[27]  H. Ando,et al.  Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 µm , 1978, IEEE Journal of Quantum Electronics.

[28]  T. Miya,et al.  Ultimate low-loss single-mode fibre at 1.55 μm , 1979 .

[29]  R. E. Nahory,et al.  Integrated In0.53Ga0.47As p-i-n f.e.t. photoreceiver , 1980 .

[30]  M. Ross,et al.  Space optical communications with the Nd: YAG laser , 1978, Proceedings of the IEEE.

[31]  H F Taylor,et al.  Contradirectional frequency-selective couplers for guided-wave optics. , 1980, Applied optics.

[32]  Y. Mizushima,et al.  Silicon avalanche photodiodes with low multiplication noise and high-speed response , 1976, IEEE Transactions on Electron Devices.

[33]  John Carroll,et al.  Short-pulse modulation of gallium-arsenide lasers with TRAPATT diodes , 1973 .

[34]  T Kimura,et al.  Optical fiber (800-Mbit/sec) transmission experiment at 1.05 microm. , 1978, Applied optics.