Faraday Rotation in Global Accretion Disk Simulations: Implications for Sgr A*
暂无分享,去创建一个
[1] W. Xue,et al. Generalized space–time noncommutative inflation , 2007, 0706.1843.
[2] D. Astronomy,et al. Constraining Radiatively Inefficient Accretion Flows with Polarization , 2007, 0705.2590.
[3] G. Hammett,et al. Electron Heating in Hot Accretion Flows , 2007, astro-ph/0703572.
[4] A. Loeb,et al. Properties of the radio-emitting gas around Sgr A* , 2007, astro-ph/0702043.
[5] J. Moran,et al. To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .
[6] E. Quataert,et al. The Effects of Thermal Conduction on Radiatively Inefficient Accretion Flows , 2006, astro-ph/0608467.
[7] H. Falcke,et al. The Rotation Measure and 3.5 Millimeter Polarization of Sagittarius A* , 2006, astro-ph/0606381.
[8] J. M. Moran,et al. Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.
[9] H. Falcke,et al. The Rotation Measure and 3.5 Mm Polarization of Sgr A , 2006 .
[10] James M. Stone,et al. Nonlinear Evolution of the Magnetothermal Instability in Two Dimensions , 2005, astro-ph/0507212.
[11] T. D. Matteo,et al. Galactic Centre stellar winds and Sgr A* accretion , 2005, astro-ph/0505382.
[12] E. Quataert,et al. Synchrotron Radiation from Radiatively Inefficient Accretion Flow Simulations: Applications to Sagittarius A* , 2004, astro-ph/0411627.
[13] H. Falcke,et al. Variable Linear Polarization from Sagittarius A*: Evidence of a Hot Turbulent Accretion Flow , 2004, astro-ph/0411551.
[14] Jessica R. Lu,et al. Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.
[15] H. Falcke,et al. Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging , 2004, Science.
[16] E. Quataert,et al. A Dynamical Model for Hot Gas in the Galactic Center , 2003, astro-ph/0310446.
[17] D. Rouan,et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.
[18] Geoffrey C. Bower,et al. Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.
[19] K. Menten,et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.
[20] H. Falcke,et al. Accepted for publication in the Astrophysical Journal The Spectrum and Variability of Circular Polarization in , 2002 .
[21] M. Begelman,et al. Circular Polarization from Stochastic Synchrotron Sources , 2001, astro-ph/0112090.
[22] R. Narayan,et al. Three-dimensional Magnetohydrodynamic Simulations of Spherical Accretion , 2001, astro-ph/0105365.
[23] Caltech,et al. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.
[24] J. Stone,et al. A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions , 2001, astro-ph/0103522.
[25] UCLA,et al. Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.
[26] R. Coker,et al. Polarized Millimeter and Submillimeter Emission from Sagittarius A* at the Galactic Center , 2000, astro-ph/0008261.
[27] E. Agol. Sagittarius A* Polarization: No Advection-dominated Accretion Flow, Low Accretion Rate, and Nonthermal Synchrotron Emission , 2000 .
[28] Holland,et al. Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.
[29] E. Agol. Sgr A* Polarization: No ADAF, Low Accretion Rate, and Non-Thermal Synchrotron Emission , 2000, astro-ph/0005051.
[30] E. Quataert,et al. Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.
[31] E. Quataert,et al. Convection-dominated Accretion Flows , 1999, astro-ph/9912440.
[32] S. Balbus. Stability, Instability, and “Backward” Transport in Stratified Fluids , 1999, astro-ph/9906315.
[33] J. Pringle,et al. Hydrodynamical non-radiative accretion flows in two dimensions , 1999, astro-ph/9908185.
[34] H. Falcke,et al. The Linear Polarization of Sagittarius A*. I. VLA Spectropolarimetry at 4.8 and 8.4 GHz , 1999, astro-ph/9904091.
[35] Roger D. Blandford,et al. On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.
[36] Jonathan E. Grindlay,et al. Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.
[37] R. Narayan,et al. Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.
[38] M. Norman,et al. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .
[39] Peter C. Tribble,et al. Depolarization of extended radio sources by a foreground Faraday screen , 1991 .
[40] J. Hawley,et al. A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .
[41] J. Papaloizou,et al. The dynamical stability of differentially rotating discs with constant specific angular momentum , 1984 .
[42] B. Burn. On the Depolarization of Discrete Radio Sources by Faraday Dispersion , 1965 .