Implementation of a thermomechanical model for the simulation of selective laser melting

Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of both heat transfer and solid mechanics. The present work describes continuum modeling of SLM as envisioned for eventual support of part-scale modeling of this fabrication process to determine end-state information such as residual stresses and distortion. The determination of the evolving temperatures is dependent on the material, the state of the material (powder or solid), the specified heating, and the configuration. Similarly, the current configuration is dependent on the temperatures, the powder-solid state, and the constitutive models. A multi-physics numerical formulation is required to solve such problems. This article describes the problem formulation, numerical method, and constitutive parameters necessary to solve such a problem. Additionally, various verification and example problems are simulated in the parallel, multi-physics finite element code Diablo, and the results presented herein.

[1]  John L. Campbell,et al.  Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design , 2011 .

[2]  C. Körner,et al.  Mesoscopic simulation of selective beam melting processes , 2011 .

[3]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[4]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[5]  J. Kruth,et al.  Feedback control of selective laser melting , 2007 .

[6]  J. L. Nowinski,et al.  Note on the applications of the Fréchet derivative , 1983 .

[7]  Thomas J. R. Hughes,et al.  Consistent linearization in mechanics of solids and structures , 1978 .

[8]  A. Segal,et al.  Comparison of finite element techniques for solidification problems , 1986 .

[9]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[10]  Jean-Pierre Kruth,et al.  Feedback control of Layerwise Laser Melting using optical sensors , 2010 .

[11]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[12]  Donald Peckner,et al.  Book Review: Handbook of Stainless Steels , 1978 .

[13]  S. Argyropoulos,et al.  Mathematical modelling of solidification and melting: a review , 1996 .

[14]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[15]  M. Salcudean,et al.  On numerical methods used in mathematical modeling of phase change in liquid metals , 1988 .

[16]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[17]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[18]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[19]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[20]  Carlos A. Felippa,et al.  Staggered transient analysis procedures for coupled mechanical systems: Formulation , 1980 .

[21]  Klaus-Jürgen Bathe,et al.  AN EFFICIENT ALGORITHM FOR ANALYSIS OF NONLINEAR HEAT TRANSFER WITH PHASE CHANGES , 1982 .

[22]  M. Z. Nashed,et al.  Some Remarks on Variations and Differentials , 1966 .

[23]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[24]  J. Crank Free and moving boundary problems , 1984 .

[25]  Andrey V. Gusarov,et al.  Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting , 2009 .

[26]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[27]  Yongqiang Yang,et al.  Research on the fabricating quality optimization of the overhanging surface in SLM process , 2013 .

[28]  J. Goldak,et al.  A new finite element model for welding heat sources , 1984 .