Bond Energies in Models of the Schrock Metathesis Catalyst

Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR′)(OH)2 (M = Cr, Mo, W; CRR′ = CH2, CHF, CF2) and MO2(OH)2 compounds, and Bronsted acidities and fluoride affinities for the M(NH)(CH2)(OH)2 transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C2H4 with M(NH)(CH2)(OH)2 and MO2(OH)2 are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy (±1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs of M═CF2 and M═CHF bonds are much lower than the M═CH2 bonds. The Cr compounds have smaller BDEs than the W or Mo complexes and should be less stable. Different M(NH)(OH)2(C3H6) and MO(OH)2(OC2...

[1]  Curtis L. Janssen,et al.  Concerning zero‐point vibrational energy corrections to electronic energies , 1991 .

[2]  Par Jean‐Louis Hérisson,et al.  Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques , 1971 .

[3]  W. M. Davis,et al.  Reaction of neopentylidene complexes of the type M(CH-t-Bu)(N-2,6-C6H3-i-Pr2)(OR)2 (M = W, Mo) with methyl acrylate and N,N-dimethylacrylamide to give metallacyclobutane complexes , 1989 .

[4]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[5]  Branko Ruscic,et al.  On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl , 2002 .

[6]  Peter Chen,et al.  Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry , 2000 .

[7]  G. Scuseria,et al.  Halocarbenes CHF, CHCl, and CHBr: geometries, singlet-triplet separations, and vibrational frequencies , 1986 .

[8]  T. Windus,et al.  Accurate heats of formation and acidities for H3PO4, H2SO4, and H2CO3 from ab initio electronic structure calculations , 2005 .

[9]  W. M. Davis,et al.  Trigonal-bipyramidal and square-pyramidal tungstacyclobutane intermediates are both present in systems in which olefins are metathesized by complexes of the type W(CHR')(N-2,6-C6H3-iso-Pr2)(OR)2 , 1989 .

[10]  M. Gordon,et al.  Principal Resonance Contributors to High-Valent, Transition-Metal Alkylidene Complexes , 1991 .

[11]  Maciej Gutowski,et al.  Thermodynamic properties of molecular borane amines and the [BH4-][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[12]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[13]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[14]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[15]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[16]  D. Dixon,et al.  Molecular structures and energetics of the (ZrO(2))(n) and (HfO(2))(n) (n = 1-4) clusters and their anions. , 2010, The journal of physical chemistry. A.

[17]  D. Dixon,et al.  Molecular and electronic structures, Brönsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. , 2006, The journal of physical chemistry. A.

[18]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[19]  David A Dixon,et al.  Accurate thermochemistry for transition metal oxide clusters. , 2009, The journal of physical chemistry. A.

[20]  D. Feller,et al.  Heats of Formation of CF2, FCO, and CF2O , 1998 .

[21]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[22]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[23]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[24]  C. Copéret,et al.  Shutting down secondary reaction pathways: the essential role of the pyrrolyl ligand in improving silica supported d(0)-ML4 alkene metathesis catalysts from DFT calculations. , 2010, Journal of the American Chemical Society.

[25]  Robert J. Harrison,et al.  Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. , 2001 .

[26]  Yuri Alexeev, Theresa L. Windus, Chang-Guo Zhan, David A. Dixon, Erratum to , 2005 .

[27]  A. J. Arduengo,et al.  Electronic Structure of a Stable Nucleophilic Carbene , 1991 .

[28]  Thomas R. Cundari,et al.  Transition Metal Imido Complexes , 1992 .

[29]  W. Goddard,et al.  Methylene: ab initio vibronic analysis and reinterpretation of the spectroscopic and negative ion photoelectron experiments , 1978 .

[30]  Luigi Cavallo,et al.  The elusive mechanism of olefin metathesis promoted by (NHC)Ru-based catalysts: a trade between steric, electronic, and solvent effects. , 2006, Journal of the American Chemical Society.

[31]  D. Dixon,et al.  Extended benchmark studies of coupled cluster theory through triple excitations , 2001 .

[32]  D. Dixon,et al.  Ab initio prediction of the gas- and solution-phase acidities of strong Brønsted acids: the calculation of pKa values less than -10. , 2006, The journal of physical chemistry. A.

[33]  C. Copéret,et al.  Beta-H transfer from the metallacyclobutane: a key step in the deactivation and byproduct formation for the well-defined silica-supported rhenium alkylidene alkene metathesis catalyst. , 2008, Journal of the American Chemical Society.

[34]  S. Koda Initial vibrational distribution and relaxation of 3CF2 produced in the reaction of oxygen atoms with tetrafluoroethylene , 1982 .

[35]  SonBinh T. Nguyen,et al.  Well-defined ruthenium olefin metathesis catalysts: Mechanism and activity , 1997 .

[36]  E. Folga,et al.  Density functional study on molybdacyclobutane and its role in olefin metathesis , 1993 .

[37]  Jun Shen,et al.  Singlet-triplet gaps in substituted carbenes predicted from block-correlated coupled cluster method , 2008 .

[38]  K. Lammertsma,et al.  The Asymmetric Schrock Olefin Metathesis Catalyst. A Computational Study , 2005 .

[39]  Rodney J. Bartlett,et al.  An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen , 1988 .

[40]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[41]  D. Dixon,et al.  σ- and π-Bond Strengths in Main Group 3−5 Compounds , 2006 .

[42]  David Feller,et al.  A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. , 2008, The Journal of chemical physics.

[43]  Lai‐Sheng Wang,et al.  Structural and electronic properties of reduced transition metal oxide clusters, M3O8 and M3O8- (M = Cr, W), from photoelectron spectroscopy and quantum chemical calculations. , 2009, The journal of physical chemistry. A.

[44]  David A Dixon,et al.  Third row transition metal hexafluorides, extraordinary oxidizers, and Lewis acids: electron affinities, fluoride affinities, and heats of formation of WF6, ReF6, OsF6, IrF6, PtF6, and AuF6. , 2010, Inorganic chemistry.

[45]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[46]  David A Dixon,et al.  Molecular structures and energetics of the (TiO2)n (n = 1-4) clusters and their anions. , 2008, The journal of physical chemistry. A.

[47]  W. C. Lineberger,et al.  Methylene: A study of the X̃ 3B1 and ã 1A1 states by photoelectron spectroscopy of CH−2 and CD−2 , 1985 .

[48]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[49]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[50]  R. Grubbs Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). , 2006, Angewandte Chemie.

[51]  L. Cavallo,et al.  Understanding the M(NHC) (NHC = N-heterocyclic carbene) bond , 2009 .

[52]  T. Dunning,et al.  A Road Map for the Calculation of Molecular Binding Energies , 2000 .

[53]  Michael Dolg,et al.  Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.

[54]  William A. Goddard,et al.  Relation between singlet-triplet gaps and bond energies , 1986 .

[55]  Gernot Frenking,et al.  Chemical bonding in transition metal carbene complexes , 2005 .

[56]  S. Koda Emission and energy transfer of triplet difluoromethylene produced in the reaction of oxygen atoms with tetrafluoroethylene , 1978 .

[57]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[58]  R. Hoffmann,et al.  Some geometrical and electronic features of the intermediate stages of olefin metathesis , 1981 .

[59]  T. Ziegler,et al.  The [2+2] Addition of Ethylene to Metal−Ligand Multiple Bonds: A Density Functional Study of Mo(E)OCl2 , 1998 .

[60]  Harold H. Fox,et al.  Electronic Structure of Mo(VI) Alkylidene Complexes and an Examination of Reactive Intermediates Using the SCF-X.alpha.-SW Method , 1994 .

[61]  C. Copéret,et al.  Understanding structural and dynamic properties of well-defined rhenium-based olefin metathesis catalysts, Re(≡CR)(=CHR)(X)(Y), from DFT and QM/MM calculations , 2005 .

[62]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[63]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[64]  W. M. Davis,et al.  Synthesis and characterization of rhenium(VII) alkylidene alkylidyne complexes of the type Re(CR')(CHR')(OR)2 and related species , 1992 .

[65]  G. Bazan,et al.  MONOADDUCTS OF IMIDO ALKYLIDENE COMPLEXES, SYN AND ANTI ROTAMERS, AND ALKYLIDENE LIGAND ROTATION , 1991 .

[66]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[67]  Niranjan Govind,et al.  Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem. , 2009, Journal of chemical theory and computation.

[68]  W. C. Lineberger,et al.  Negative ion photoelectron spectroscopy of halocarbene anions (HCF-, HCCl-, HCBr-, and HCI-); photoelectron angular distributions and neutral triplet excitation energies , 1992 .

[69]  D. Dixon Singlet-triplet splittings in CF3-substituted carbenes , 1986 .

[70]  Mark S. Gordon,et al.  Theoretical investigations of olefin metathesis catalysts , 1992 .

[71]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[72]  J. Dewan,et al.  Preparation and reactivity of several alkylidene complexes of the type W(CHR')(N-2,6-C6H3-iso-Pr2)(OR)2 and related tungstacyclobutane complexes. Controlling metathesis activity through the choice of alkoxide ligand , 1988 .

[73]  W. M. Davis,et al.  Further studies of imido alkylidene complexes of tungsten, well-characterized olefin metathesis catalysts with controllable activity , 1990 .

[74]  D. Dixon,et al.  Heats of formation and ionization energies of NHx, x=0–3 , 2001 .

[75]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[76]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[77]  Y. Chauvin,et al.  Olefin metathesis: the early days (Nobel Lecture). , 2006, Angewandte Chemie.

[78]  W. Goddard,et al.  Olefin metathesis - a mechanistic study of high-valent Group VI catalysts , 1982 .

[79]  R. Grubbs,et al.  Olefin Metathesis with 1,1-Difluoroethylene , 2001 .

[80]  W. T. Borden,et al.  Why is the .pi. bond in tetrafluoroethylene weaker than that in ethylene? An ab initio investigation , 1989 .

[81]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[82]  R. Schrock Recent advances in the chemistry and applications of high oxidation state alkylidene complexes , 1994 .

[83]  R. Schrock,et al.  Rotational Isomers of Mo(VI) Alkylidene Complexes and Cis/Trans Polymer Structure: Investigations in Ring-Opening Metathesis Polymerization , 1993 .

[84]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[85]  W. M. Davis,et al.  Preparation and reactivity of tungsten(VI) metallacyclobutane complexes. Square pyramids versus trigonal bipyramids , 1990 .

[86]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[87]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[88]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[89]  D. Dixon,et al.  Predicting the heats of formation of model hydrocarbons up to benzene , 2000 .

[90]  Alberto Vela,et al.  SINGLET-TRIPLET GAPS AND SPIN POTENTIALS , 1998 .

[91]  D. Dixon,et al.  Benchmark calculations on the electron detachment energies of MO3* and M2O6* (M = Cr, Mo, W). , 2007, The journal of physical chemistry. A.

[92]  S. Graul,et al.  Gas-phase acidities derived from threshold energies for activated reactions , 1990 .

[93]  Luigi Cavallo,et al.  Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective. , 2002, Journal of the American Chemical Society.

[94]  D. Dixon,et al.  Low-Lying Electronic States of M₃O₉- and M₃O₉²- (M = Mo, W). , 2007 .

[95]  W. Goddard,et al.  Correlation‐consistent singlet–triplet gaps in substituted carbenes , 1988 .

[96]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[97]  Christophe Copéret,et al.  Understanding d(0)-olefin metathesis catalysts: which metal, which ligands? , 2007, Journal of the American Chemical Society.

[98]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[99]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[100]  Michael Dolg,et al.  Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. , 2009, The Journal of chemical physics.

[101]  G. Bazan,et al.  Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins , 1990 .

[102]  Yun-Dong Wu,et al.  Theoretical studies on the ring-opening metathesis reaction of norbornadiene with molybdenum alkylidenes , 2003 .

[103]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[104]  David A Dixon,et al.  Electron affinities, fluoride affinities, and heats of formation of the second row transition metal hexafluorides: MF(6) (M = Mo, Tc, Ru, Rh, Pd, Ag). , 2010, The journal of physical chemistry. A.

[105]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[106]  Evert Jan Baerends,et al.  Relativistic regular two-component Hamiltonians. , 1996 .

[107]  Gernot Frenking,et al.  Structure and Bonding of Low‐Valent (Fischer‐Type) and High‐Valent (Schrock‐Type) Transition Metal Carbene Complexes , 1998 .

[108]  D. Dixon,et al.  On a Quantitative Scale for Lewis Acidity and Recent Progress in Polynitrogen Chemistry , 2000 .

[109]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[110]  Robert H. Grubbs,et al.  Relative Reaction Rates of Olefin Substrates with Ruthenium(II) Carbene Metathesis Initiators1 , 1998 .

[111]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[112]  Peter J. Knowles,et al.  Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories , 1994 .

[113]  W. T. Borden,et al.  Ab initio calculations of the relative strengths of the .pi. bonds in acetylene and ethylene and of their effect on the relative energies of .pi.-bond addition reactions , 1991 .

[114]  Theresa L Windus,et al.  Thermodynamic properties of the C5, C6, and C8 n-alkanes from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[115]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[116]  C. Copéret,et al.  d0 Re-Based Olefin Metathesis Catalysts, Re(⋮CR)(CHR)(X)(Y): The Key Role of X and Y Ligands for Efficient Active Sites , 2005 .

[117]  R. Squires,et al.  Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study , 1997 .

[118]  David A Dixon,et al.  Bond dissociation energies in second-row compounds. , 2008, The journal of physical chemistry. A.

[119]  E. Davidson,et al.  Validity of first-order perturbation theory for relativistic energy corrections , 1981 .

[120]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[121]  Yun-Dong Wu,et al.  Theoretical studies on alkene addition to molybdenum alkylidenes , 1997 .

[122]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[123]  H. Schaefer,et al.  Structure and energetics of simple carbenes methylene, fluoromethylene, chloromethylene, bromomethylene, difluoromethylene, and dichloromethylene , 1977 .

[124]  R. Schrock Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). , 2006, Angewandte Chemie.