Partite Turán-densities for complete r −uniform hypergraphs on r + 1 vertices

In this paper we investigate density conditions for finding a complete $r$-uniform hypergraph $K_{r+1}^{(r)}$ on $r+1$ vertices in an $(r+1)$-partite $r$-uniform hypergraph $G$. First we prove an optimal condition in terms of the densities of the $(r+1)$ induced $r$-partite subgraphs of $G$. Second, we prove a version of this result where we assume that $r$-tuples of vertices in $G$ have their neighbours evenly distributed in $G$. Third, we also prove a counting result for the minimum number of copies of $K_{r+1}^{(r)}$ when $G$ satisfies our density bound, and present some open problems. A striking difference between the graph, $r=2$, and the hypergraph, $ r \geq 3 $, cases is that in the first case both the existence threshold and the counting function are non-linear in the involved densities, whereas for hypergraphs they are given by a linear function. Also, the smallest density of the $r$-partite parts needed to ensure the existence of a complete $r$-graph with $(r+1)$ vertices is equal to the golden ratio $\tau=0.618\ldots$ for $r=2$, while it is $\frac{r}{r+1}$for $r\geq3$.

[1]  Florian Pfender,et al.  Complete subgraphs in multipartite graphs , 2009, Comb..

[2]  Fan Chung Graham,et al.  An Upper Bound for the Turán Number t3(n,4) , 1999, J. Comb. Theory, Ser. A.

[3]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[4]  Klas Markström,et al.  ℓ-Degree Turán Density , 2014, SIAM J. Discret. Math..

[5]  Guy Giraud,et al.  Remarks on two extreme problems , 1990 .

[6]  Klas Markström,et al.  {l}-degree Tur\'an density , 2012 .

[7]  Alexander A. Razborov,et al.  On 3-Hypergraphs with Forbidden 4-Vertex Configurations , 2010, SIAM J. Discret. Math..

[8]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[9]  YI ZHAO AN EXACT RESULT FOR HYPERGRAPHS AND UPPER BOUNDS FOR THE TURÁN DENSITY OF K , 2009 .

[10]  Klas Markström,et al.  Extremal hypergraphs and bounds for the Turán density of the 4-uniform K5 , 2009, Discret. Math..

[11]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[12]  J. Robert Johnson,et al.  The minimal density of triangles in tripartite graphs , 2010 .

[13]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[14]  Jian Shen,et al.  Density Conditions For Triangles In Multipartite Graphs , 2006, Comb..

[15]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[16]  Dhruv Mubayi,et al.  Extremal Problems for t-Partite and t-Colorable Hypergraphs , 2008, Electron. J. Comb..

[17]  Dhruv Mubayi Counting substructures II: Hypergraphs , 2013, Comb..

[18]  Guy Giraud,et al.  Remarques sur deux problemes extremaux , 1990, Discret. Math..

[19]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.