The dramatic influence of gelation solvent choice on the structure and mechanical properties of resorcinol-formaldehyde aerogels

[1]  Charles W. Peak,et al.  Sol-gel derived silica: A review of polymer-tailored properties for energy and environmental applications , 2022, Microporous and Mesoporous Materials.

[2]  N. Leventis Polyurea Aerogels: Synthesis, Material Properties, and Applications , 2022, Polymers.

[3]  B. Matović,et al.  Carbon cryogel preparation and characterization , 2021, Diamond and Related Materials.

[4]  A. Fletcher,et al.  Investigating the Role of the Catalyst within Resorcinol–Formaldehyde Gel Synthesis , 2021, Gels.

[5]  B. Milow,et al.  Insights into the Micromechanics of Organic Aerogels Based on Experimental and Modeling Results , 2021, Advanced Engineering Materials.

[6]  P. Mulheran,et al.  Advancing Computational Analysis of Porous Materials—Modeling Three-Dimensional Gas Adsorption in Organic Gels , 2021, The journal of physical chemistry. B.

[7]  J. Smiatek,et al.  Calculation of donor numbers: Computational estimates for the Lewis basicity of solvents , 2020 .

[8]  Soojin Park,et al.  Recent advances in preparations and applications of carbon aerogels: A review , 2020 .

[9]  P. Mulheran,et al.  Modelling Organic Gel Growth in Three Dimensions: Textural and Fractal Properties of Resorcinol–Formaldehyde Gels , 2020, Gels.

[10]  A. Bismarck,et al.  Mechanically whipped phenolic froths as versatile templates for manufacturing phenolic and carbon foams , 2019, Materials & Design.

[11]  Hojat Majedi Far,et al.  K-Index: A Descriptor, Predictor, and Correlator of Complex Nanomorphology to Other Material Properties. , 2019, ACS nano.

[12]  P. Cassagnau,et al.  Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution , 2019, Polymer.

[13]  I. Leito,et al.  pKa values in organic chemistry – Making maximum use of the available data , 2018, Tetrahedron Letters.

[14]  S. M. Attia,et al.  Conduction mechanism and dielectric properties of pure and composite resorcinol formaldehyde aerogels doped with silver , 2017 .

[15]  Yu-Zhong Wang,et al.  Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. , 2017, ACS applied materials & interfaces.

[16]  Paulo Lozano,et al.  Mitigation of anomalous expansion of carbon xerogels and controllability of mean-pore-size by changes in mold geometry , 2017 .

[17]  M. Mahmoudi,et al.  Synthesis and biomedical applications of aerogels: Possibilities and challenges. , 2016, Advances in colloid and interface science.

[18]  H. Maleki Recent advances in aerogels for environmental remediation applications: A review , 2016 .

[19]  W. Fang,et al.  Resorcinol–formaldehyde aerogels for CMOS-MEMS capacitive humidity sensor , 2015 .

[20]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[21]  L. Ratke,et al.  Flexibilisation of resorcinol–formaldehyde aerogels , 2013 .

[22]  Hongbing Lu,et al.  Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules , 2013 .

[23]  K. László,et al.  In situ SAXS investigation of structural changes in soft resorcinol–formaldehyde polymer gels during CO2-drying , 2013 .

[24]  A. Szczurek,et al.  Porosity of resorcinol-formaldehyde organic and carbon aerogels exchanged and dried with supercritical organic solvents , 2011 .

[25]  Chao Ma,et al.  Graphitization of aerogel-like carbons in molten sodium metal , 2011 .

[26]  Ahmed M. Elkhatat,et al.  Advances in Tailoring Resorcinol‐Formaldehyde Organic and Carbon Gels , 2011, Advances in Materials.

[27]  Arild Gustavsen,et al.  Aerogel insulation for building applications: A state-of-the-art review , 2011 .

[28]  C. Sotiriou-Leventis,et al.  Multifunctional Polyurea Aerogels from Isocyanates and Water. a Structure-property Case Study , 2010 .

[29]  C. Sotiriou-Leventis,et al.  Time-Efficient Acid-Catalyzed Synthesis of Resorcinol−Formaldehyde Aerogels , 2007 .

[30]  D. Fairen-jimenez,et al.  Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts , 2006 .

[31]  D. Cole,et al.  Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques. , 2006, The Journal of chemical physics.

[32]  V. Gordeliy,et al.  Scientific Reviews: Two-Detector System for Small-Angle Neutron Scattering Instrument , 2005 .

[33]  Dingcai Wu,et al.  Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde , 2005 .

[34]  M. Calligaris Structure and bonding in metal sulfoxide complexes: an update , 2004 .

[35]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[36]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[37]  B. E. Yoldas,et al.  Chemical Engineering of Aerogel Morphology Formed under Nonsupercritical Conditions for Thermal Insulation , 2000 .

[38]  Ishizaka,et al.  SAXS Study on Gelation Process in Preparation of Resorcinol-Formaldehyde Aerogel. , 1998, Journal of colloid and interface science.

[39]  A. Pierre,et al.  Introduction to Sol-Gel Processing , 1998 .

[40]  C. Oh,et al.  The Effect of Overlap between Monomers on the Determination of Fractal Cluster Morphology , 1997, Journal of colloid and interface science.

[41]  R. Pekala,et al.  Structure of organic aerogels. 1. Morphology and scaling , 1993 .

[42]  W. Fawcett Acidity and basicity scales for polar solvents , 1993 .

[43]  R. Pekala,et al.  Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.

[44]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[45]  R. Pekala,et al.  A synthetic route to organic aerogels: Mechanism, structure, and properties. [Resorcinol-formaldehyde] , 1989 .

[46]  A. Hurd,et al.  Surface roughness in vapor-phase aggregates via adsorption and scattering techniques , 1988 .

[47]  Y. Ostanevich Time‐of‐flight small‐angle scattering spectrometers on pulsed neutron sources , 1988 .

[48]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  Avinash,et al.  Kinetics of the acid-catalyzed phenol–formaldehyde reaction , 1976 .

[50]  V. Gutmann Empirical parameters for donor and acceptor properties of solvents , 1976 .

[51]  Chul B. Park,et al.  Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO2 supercritical conditions. , 2017, Journal of colloid and interface science.

[52]  Masao Kakudo,et al.  Small Angle Scattering of X-Rays , 1968 .