Dynamical landscape and multistability of a climate model

We apply two independent data analysis methodologies to locate stable climate states in an intermediate complexity climate model and analyse their interplay. First, drawing from the theory of quasi-potentials, and viewing the state space as an energy landscape with valleys and mountain ridges, we infer the relative likelihood of the identified multistable climate states and investigate the most likely transition trajectories as well as the expected transition times between them. Second, harnessing techniques from data science, and specifically manifold learning, we characterize the data landscape of the simulation output to find climate states and basin boundaries within a fully agnostic and unsupervised framework. Both approaches show remarkable agreement, and reveal, apart from the well known warm and snowball earth states, a third intermediate stable state in one of the two versions of PLASIM, the climate model used in this study. The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production via the hydrological cycle drastically change the topography of the dynamical landscape of Earth’s climate.

[1]  K. Fraedrich,et al.  The Earth's entropy production budget as simulated by a climate system model of intermediate complexity , 2003 .

[2]  Michel Crucifix,et al.  Thermohaline circulation hysteresis: A model intercomparison , 2005 .

[3]  P. Landa Mechanism of stochastic resonance , 2004 .

[4]  Edward N. Lorenz,et al.  Irregularity: a fundamental property of the atmosphere* , 1984 .

[5]  Sui Huang The molecular and mathematical basis of Waddington's epigenetic landscape: A framework for post‐Darwinian biology? , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[6]  I. Held,et al.  Entropy budget of an atmosphere in radiative-convective equilibrium , 2000 .

[7]  Tiejun Li,et al.  Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond. , 2016, The Journal of chemical physics.

[8]  M. Scheffer,et al.  Trajectories of the Earth System in the Anthropocene , 2018, Proceedings of the National Academy of Sciences.

[9]  D. Abbot,et al.  The Jormungand global climate state and implications for Neoproterozoic glaciations , 2011 .

[10]  S. Orszag Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation , 1970 .

[11]  Valerio Lucarini,et al.  ENERGETICS OF CLIMATE MODELS: NET ENERGY BALANCE AND MERIDIONAL ENTHALPY TRANSPORT , 2009, 0911.5689.

[12]  Kang-Kang Wang,et al.  Stochastic resonance and stability for an ecological vegetation growth system driven by colored noises and multiplicative signal , 2016 .

[13]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[14]  P. Gaspard Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .

[15]  多賀 厳太郎,et al.  Dynamical Systems Approach , 2001 .

[16]  Tiejun Li,et al.  Realization of Waddington ’ s Metaphor : Potential Landscape , Quasi-potential , A-type Integral and Beyond , 2015 .

[17]  Michael Ghil,et al.  Climate stability for a Sellers-type model , 1976 .

[18]  Freddy Bouchet,et al.  Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations , 2014, 1403.0216.

[19]  Marten Scheffer,et al.  Microscale vegetation‐soil feedback boosts hysteresis in a regional vegetation–climate system , 2008 .

[20]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[21]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate , 2000 .

[22]  D. Mei,et al.  Stochastic resonance in a groundwater-dependent plant ecosystem with fluctuations and time delay , 2014 .

[23]  V. Lucarini,et al.  Global stability properties of the climate: Melancholia states, invariant measures, and phase transitions , 2019, Nonlinearity.

[24]  Valerio Lucarini,et al.  Bistable systems with stochastic noise: virtues and limits of effective one-dimensional Langevin equations , 2012 .

[25]  Eric Vanden-Eijnden,et al.  Long Term Effects of Small Random Perturbations on Dynamical Systems: Theoretical and Computational Tools , 2016, 1604.03818.

[26]  A. Weaver,et al.  Snowball versus slushball Earth: Dynamic versus nondynamic sea ice? , 2007 .

[27]  F. Chapin,et al.  Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming , 2006, Nature.

[28]  Hermann Held,et al.  Basic mechanism for abrupt monsoon transitions , 2009, Proceedings of the National Academy of Sciences.

[29]  Steven K. Baum,et al.  Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model , 2000, Nature.

[30]  Valerio Lucarini,et al.  Thermodynamic efficiency and entropy production in the climate system. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  F. Joos,et al.  A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies , 2011 .

[32]  M. Budyko The Effects of Changing the Solar Constant on the Climate of a General Circulation Model , 2008 .

[33]  P. Cessi The Global Overturning Circulation. , 2019, Annual review of marine science.

[34]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.

[35]  Stefan Rahmstorf,et al.  On the driving processes of the Atlantic meridional overturning circulation , 2007 .

[36]  Richard Goody,et al.  Sources and sinks of climate entropy , 2000 .

[37]  Denis R. Bell Stochastic Differential Equations and Hypoelliptic Operators , 2004 .

[38]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[39]  Valerio Lucarini,et al.  Extremes and Recurrence in Dynamical Systems , 2016, 1605.07006.

[40]  Dai Edge states in the climate system : exploring global instabilities and critical transitions , 2017 .

[41]  M. Rosenblatt,et al.  Multivariate k-nearest neighbor density estimates , 1979 .

[42]  Erik Aurell,et al.  Quasi-potential landscape in complex multi-stable systems , 2012, Journal of The Royal Society Interface.

[43]  Jürgen Kurths,et al.  A deforestation-induced tipping point for the South American monsoon system , 2017, Scientific Reports.

[44]  A. Semtner A MODEL FOR THE THERMODYNAMIC GROWTH OF SEA ICE IN NUMERICAL INVESTIGATIONS OF CLIMATE , 1975 .

[45]  George Veronis,et al.  An Analysis of Wind-Driven Ocean Circulation with a Limited Number of Fourier Components , 1963 .

[46]  P Ao,et al.  LETTER TO THE EDITOR: Potential in stochastic differential equations: novel construction , 2004 .

[47]  Peter Imkeller,et al.  First exit times of SDEs driven by stable Lévy processes , 2006 .

[48]  J. Marotzke,et al.  The transition from the present-day climate to a modern Snowball Earth , 2010 .

[49]  Ying-Cheng Lai,et al.  Transient Chaos: Complex Dynamics on Finite Time Scales , 2011 .

[50]  B. Eckhardt,et al.  Basin boundary, edge of chaos and edge state in a two-dimensional model , 2008, 0808.2636.

[51]  Edward N. Lorenz,et al.  The nature and theory of the general circulation of the atmosphere , 1967 .

[52]  R. Zia,et al.  Nonequilibrium Oscillations, Probability Angular Momentum, and the Climate System , 2019, Journal of Statistical Physics.

[53]  William D. Sellers,et al.  A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. , 1969 .

[54]  Valerio Lucarini,et al.  Modeling complexity: the case of climate science , 2011, 1106.1265.

[55]  V. Lucarini,et al.  Climate of Earth-like planets with high obliquity and eccentric orbits: Implications for habitability conditions , 2014, 1401.5323.

[56]  A. Harem Noise-induced attractor explosions near tangent bifurcations , 2002 .

[57]  Philip B. Holden,et al.  PLASIM–GENIE v1.0: a new intermediate complexity AOGCM , 2015 .

[58]  Valerio Lucarini,et al.  Crisis of the chaotic attractor of a climate model: a transfer operator approach , 2015, 1507.02228.

[59]  J. Peixoto,et al.  Physics of climate , 1984 .

[60]  Catherine Nicolis,et al.  Stochastic aspects of climatic transitions - Response to a periodic forcing , 2018 .

[61]  P. Hänggi Escape from a Metastable State , 1986 .

[62]  Isaac M. Held,et al.  The Gap between Simulation and Understanding in Climate Modeling , 2005 .

[63]  Valerio Lucarini A New Mathematical Framework for Atmospheric Blocking Events , 2021 .

[64]  Michael Ghil,et al.  A mathematical theory of climate sensitivity or, How to deal with both anthropogenic forcing and natural variability? , 2015 .

[65]  Frank Lunkeit,et al.  Portable University Model of the Atmosphere , 2001 .

[66]  F. Lunkeit,et al.  Global instability in the Ghil–Sellers model , 2014, Climate Dynamics.

[67]  Stefan Rahmstorf,et al.  Abrupt glacial climate changes due to stochastic resonance. , 2002, Physical review letters.

[68]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[69]  B. Saltzman Dynamical Paleoclimatology: Generalized Theory Of Global Climate Change , 2002 .

[70]  P. Ao Global view of bionetwork dynamics: adaptive landscape. , 2009, Journal of genetics and genomics = Yi chuan xue bao.

[71]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[72]  Valerio Lucarini,et al.  Transitions across Melancholia States in a Climate Model: Reconciling the Deterministic and Stochastic Points of View. , 2018, Physical review letters.

[73]  Pierre Gaspard,et al.  Trace Formula for Noisy Flows , 2002 .

[74]  F. Bouchet,et al.  Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example , 2015, 1509.03273.

[75]  J. Charney,et al.  Multiple Flow Equilibria in the Atmosphere and Blocking , 1979 .

[76]  R. Grauer,et al.  The instanton method and its numerical implementation in fluid mechanics , 2015, 1506.08745.

[77]  Alex Rodriguez,et al.  Automatic topography of high-dimensional data sets by non-parametric Density Peak clustering , 2018, Inf. Sci..

[78]  Giang T. Tran,et al.  PALEO-PGEM v1.0: a statistical emulator of Pliocene–Pleistocene climate , 2019, Geoscientific Model Development.

[79]  Peter Grassberger,et al.  Noise-induced escape from attractors , 1989 .

[80]  Franco Molteni,et al.  Toward a dynamical understanding of planetary-scale flow regimes. , 1993 .

[81]  Valerio Lucarini,et al.  Thermodynamic Analysis of Snowball Earth Hysteresis Experiment: Efficiency, Entropy Production, and Irreversibility , 2009 .

[82]  B. Dubrulle,et al.  Influence of Reynolds number and forcing type in a turbulent von Kármán flow , 2014, 1405.0813.

[83]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[84]  Catherine Nicolis,et al.  Stochastic aspects of climatic transitions—response to a periodic forcing , 1982 .

[85]  Eric Vanden-Eijnden,et al.  Numerical computation of rare events via large deviation theory. , 2018, Chaos.

[86]  P. Imkeller,et al.  The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise , 2013 .

[87]  J. Donges,et al.  Emergence of cascading dynamics in interacting tipping elements of ecology and climate , 2019, Royal Society Open Science.

[88]  Alessandro Laio,et al.  Computing the Free Energy without Collective Variables. , 2018, Journal of chemical theory and computation.

[89]  Michael Ghil,et al.  “Waves” vs. “particles” in the atmosphere's phase space: A pathway to long-range forecasting? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. Graham Macroscopic potentials, bifurcations and noise in dissipative systems , 1987 .

[91]  S. Rahmstorf,et al.  The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions , 2005 .

[92]  M. Ghil,et al.  The physics of climate variability and climate change , 2019, 1910.00583.

[93]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[94]  H. Stommel,et al.  Thermohaline Convection with Two Stable Regimes of Flow , 1961 .

[95]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[96]  P. Ao,et al.  SDE decomposition and A-type stochastic interpretation in nonequilibrium processes , 2017 .

[97]  C. Waddington,et al.  The strategy of the genes , 1957 .

[98]  Valerio Lucarini,et al.  Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns , 2015, Journal of Statistical Physics.

[99]  F. Lunkeit,et al.  The Impact of Oceanic Heat Transport on the Atmospheric Circulation: a Thermodynamic Perspective , 2014, 1410.2562.

[100]  V. Lucarini,et al.  Global stability properties of the climate: Melancholia states, invariant measures, and phase transitions , 2019 .

[101]  Raymond T. Pierrehumbert,et al.  Climate of the Neoproterozoic , 2011 .

[102]  William F. Spotz,et al.  Climate modeling , 2002, Computing in Science & Engineering.

[103]  Tao Yang,et al.  Impact of time delays on stochastic resonance in an ecological system describing vegetation , 2014 .

[104]  R. Alley,et al.  Stochastic resonance in the North Atlantic , 2001 .

[105]  Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator. , 2020, Chaos.

[106]  Valerio Lucarini,et al.  Mathematical and physical ideas for climate science , 2013, 1311.1190.

[107]  P. Ditlevsen,et al.  Observation of α‐stable noise induced millennial climate changes from an ice‐core record , 1999 .

[108]  Marika M. Holland,et al.  The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates , 2001, Data, Models and Analysis.

[109]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[110]  Valerio Lucarini,et al.  Entropy production and coarse graining of the climate fields in a general circulation model , 2013, Climate Dynamics.

[111]  Joaquín Tintoré,et al.  Stochastic resonance in the thermohaline circulation , 2001 .

[112]  Alessandro Laio,et al.  Estimating the intrinsic dimension of datasets by a minimal neighborhood information , 2017, Scientific Reports.

[113]  Valerio Lucarini,et al.  A new framework for climate sensitivity and prediction: a modelling perspective , 2014, Climate Dynamics.

[114]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[115]  V. Lucarini,et al.  A new mathematical framework for atmospheric blocking events , 2019, Climate Dynamics.

[116]  V. Lucarini,et al.  Edge states in the climate system: exploring global instabilities and critical transitions , 2016, 1605.03855.

[117]  Davide Faranda,et al.  Dynamical proxies of North Atlantic predictability and extremes , 2017, Scientific Reports.

[118]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[119]  P. Ditlevsen Extension of stochastic resonance in the dynamics of ice ages , 2010 .

[120]  Heiko Jansen,et al.  The Planet Simulator: Towards a user friendly model , 2005 .

[121]  Richard L. Kautz,et al.  Activation energy for thermally induced escape from a basin of attraction , 1987 .

[122]  Valerio Lucarini,et al.  Thermodynamics of climate change: generalized sensitivities , 2010 .

[123]  Graham,et al.  Nonequilibrium potentials for dynamical systems with fractal attractors or repellers. , 1991, Physical review letters.

[124]  V. Lucarini,et al.  Bistability of the climate around the habitable zone: A thermodynamic investigation , 2012, 1207.1254.

[125]  Benoît Tartinville,et al.  Description of the Earth system model of intermediate complexity LOVECLIM version 1.2 , 2010 .

[126]  Michael Ghil,et al.  Low‐frequency variability of the large‐scale ocean circulation: A dynamical systems approach , 2005 .

[128]  Frank Noé,et al.  Markov state models based on milestoning. , 2011, The Journal of chemical physics.

[129]  J. Yorke,et al.  Edge of chaos in a parallel shear flow. , 2006, Physical review letters.

[130]  Claes Rooth,et al.  Hydrology and ocean circulation , 1982 .

[131]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.