Ductile tearing of pipeline-steel wide plates: II. Modeling of in-plane crack propagation

Abstract The purpose of this work is to develop a finite element simulation of static ductile tearing tests carried out on pipeline-steel wide plates. Experiments have been presented in a companion paper (Part I [1] ). The simulation is based on an extension of the Gurson–Tvergaard–Needleman model which includes plastic anisotropy and viscoplasticity effects. The parameters of the model are fitted using tensile specimens (smooth and notched bars). Simulated tests are used to evaluate macroscopic fracture parameters which were experimentally measured: the energy dissipation rate R and the thickness reduction Z. The simulation tool is then used to numerically investigate the effect of plate thickness, plastic anisotropy and through-thickness hardness gradients on the crack growth resistance. It is shown that with increasing thickness, the energy dissipation rate first increases and then decreases. A through-thickness hardness gradient is beneficial when the surface is harder than the bulk. Plastic anisotropy can be either detrimental or beneficial depending on the loading direction. These effects are explained in terms of plastic localization inducing necking along the crack path and in terms of stress distribution.

[1]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[2]  M. F. Kanninen,et al.  Steady-State Crack Propagation in Pressurized Pipelines , 1977 .

[3]  Jacques Besson,et al.  Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments , 2001 .

[4]  Jacques Besson,et al.  Size and geometry effects on ductile rupture of notched bars in a C-Mn steel: experiments and modelling , 1997 .

[5]  John W. Hutchinson,et al.  A computational approach to ductile crack growth under large scale yielding conditions , 1995 .

[6]  Albert S. Kobayashi,et al.  An experimental and analytical investigation of axial crack propagation in long pipes , 1986 .

[7]  R. J. Green,et al.  A plasticity theory for porous solids , 1972 .

[8]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[9]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[10]  F. M. Beremin Cavity formation from inclusions in ductile fracture of A508 steel , 1981 .

[11]  M. F. Kanninen,et al.  The development of a fluid/structure interaction model for flawed fluid containment boundaries with applications to gas transmission and distribution piping , 1991 .

[12]  S. Yukawa,et al.  Critical Appraisal of Fracture Mechanics , 1965 .

[13]  Bjørn Skallerud,et al.  Effects of Finite Element Mesh on Numerical Prediction of Ductile Tearing , 1999 .

[14]  M. F. Kanninen,et al.  A theoretical model for crack propagation and crack arrest in pressurized pipelines , 1980 .

[15]  Gt Hahn,et al.  Crack Arrest Methodology and Applications , 1980 .

[16]  Jacques Besson,et al.  Object-Oriented Programming Applied to the Finite Element Method Part II. Application to Material Behaviors , 1998 .

[17]  Susumu Shima,et al.  Plasticity theory for porous metals , 1976 .

[18]  Thomas Pardoen,et al.  Thickness dependence of cracking resistance in thin aluminium plates , 1999 .

[19]  J. Newman,et al.  Prediction of stable tearing and fracture of a 2000-series aluminum alloy plate using a CTOA criterion , 1997 .

[20]  R. H. Dodds,et al.  Three-dimensional modeling of ductile crack growth in thin sheet metals: computational aspects and validation , 1999 .

[21]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[22]  E. Doege,et al.  Prediction of necking and wrinkling in sheet-metal forming , 1995 .

[23]  W. Brown,et al.  Fracture Toughness Testing Methods , 1965 .

[24]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[25]  A. Pineau,et al.  Global and Local Approaches of Fracture — Transferability of Laboratory Test Results to Components , 1992 .

[26]  François Rivalin,et al.  Développement d'aciers pour gazoducs à haute limite d'élasticité et ténacité élevée : mécanique et mécanismes de la rupture ductile à grande vitesse , 1998 .

[27]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[28]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[29]  G. C. Sih,et al.  Fracture Mechanics in Pipeline Technology , 1981 .

[30]  Y. Liu,et al.  Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics , 1994 .

[31]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[32]  A. C. Mackenzie,et al.  On the influence of state of stress on ductile failure initiation in high strength steels , 1977 .

[33]  C. Shih,et al.  Family of crack-tip fields characterized by a triaxiality parameter—II. Fracture applications , 1992 .

[34]  O. Kolednik A simple model to explain the geometry dependence of J−Δa-curves , 1993 .

[35]  A. H. Priest,et al.  A multi-test piece approach to the fracture characterisation of linepipe steels , 1981 .

[36]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[37]  Albert S. Kobayashi,et al.  On the Motion of an Axial Through Crack in a Pipe , 1981 .

[38]  W. Andrews,et al.  Thickness and Side-Groove Effects on J - and δ-Resistance Curves for A533-B Steel at 93°C , 1979 .

[39]  C. Shih,et al.  Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields , 1991 .

[40]  R. Hill The mathematical theory of plasticity , 1950 .

[41]  M. Abouaf,et al.  Finite element simulation of hot isostatic pressing of metal powders , 1988 .

[42]  W. A. Maxey,et al.  Dynamic Crack Propagation in Line Pipe , 1981 .

[43]  C. Turner,et al.  A MICRO AND MACRO APPROACH TO THE ENERGY DISSIPATION RATE MODEL OF STABLE DUCTILE CRACK GROWTH , 1994 .

[44]  J. Besson,et al.  Rheology of porous alumina and simulation of hot isostatic pressing , 1992 .

[45]  Jacques Besson,et al.  Polymorphic constitutive equations in finite element codes , 1997 .

[46]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[47]  Albert S. Kobayashi,et al.  Fracture in Straight Pipes Under Large Deflection Conditions—Part I: Structural Deformations , 1977 .