Bayesian data analysis tools for atomic physics

We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested fit to calculate the different probability distributions and other related quantities. Nested fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.

[1]  R. T. Cox The Algebra of Probable Inference , 1962 .

[2]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[3]  J. Egger,et al.  Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms , 2016, 1605.03300.

[4]  Leslie E Ballentine,et al.  Probability theory in quantum mechanics , 1986 .

[5]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[6]  H. Jeffreys,et al.  Theory of probability , 1896 .

[7]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[8]  F. Feroz,et al.  Exploring multi-modal distributions with nested sampling , 2013, 1312.5638.

[9]  F. Yates Contingency Tables Involving Small Numbers and the χ2 Test , 1934 .

[10]  John K. Stockton,et al.  Bayesian estimation of differential interferometer phase , 2007 .

[11]  C. Jeynes,et al.  Bayesian error analysis of Rutherford backscattering spectra , 1999 .

[12]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[13]  C. D. Litton,et al.  Theory of Probability (3rd Edition) , 1984 .

[14]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[15]  J. Egger,et al.  Measurement of the charged pion mass using a low-density target of light atoms , 2016, 1609.09752.

[16]  N. G. Best,et al.  The deviance information criterion: 12 years on , 2014 .

[17]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[18]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[19]  K. Blaum,et al.  Resolution of single spin flips of a single proton. , 2013, Physical review letters.

[20]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[21]  E. Jaynes Probability theory : the logic of science , 2003 .

[22]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[23]  C. Robert,et al.  Properties of nested sampling , 2008, 0801.3887.

[24]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[27]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[28]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[29]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[30]  R. Trotta,et al.  Bayesian calibrated significance levels applied to the spectral tilt and hemispherical asymmetry , 2007, 0706.3014.

[31]  Paul Indelicato,et al.  Observation of the 2p3/2→2s1/2 intra-shell transition in He-like uranium , 2008, 0811.1284.

[32]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[33]  G. Mana,et al.  Bayesian inference of a negative quantity from positive measurement results , 2009, 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum.

[34]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[35]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[36]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[37]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[38]  J. Skilling Bayesian computation in big spaces-nested sampling and Galilean Monte Carlo , 2012 .

[39]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[40]  D. Sivia,et al.  Molecular spectroscopy and Bayesian spectral analysis—how many lines are there? , 1992 .

[41]  Johannes Buchner,et al.  A statistical test for Nested Sampling algorithms , 2014, Statistics and Computing.

[42]  J. Skilling Nested Sampling’s Convergence , 2009 .

[43]  Yuri Kalambet,et al.  Reconstruction of chromatographic peaks using the exponentially modified Gaussian function , 2011 .

[44]  Robert Cousins,et al.  Clarification of the use of CHI-square and likelihood functions in fits to histograms , 1984 .

[45]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[46]  D. Parkinson,et al.  A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.

[47]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .