The application of semiconductors with negative electron affinity surfaces to electron emission devices

Semiconductors with negative electron affinity (NEA) surfaces are used as photoemitters, secondary emitters, and cold-cathode emitters. A comprehensive review of the characteristics and applications of these materials is presented, the concept of NEA is described, and a comparison is made between NEA and conventional emitters. Electron generation, transport, and emission processes of NEA emitters are discussed. NEA III-V compound photocathodes, especially GaAs, are described with respect to their fabrication, performance, and applications to photomultipliers and image intensifier tubes. The structure and performance of NEA secondary emitters are presented. NEA GaP secondary-emission dynodes represent the most important device application. NEA cold cathodes, using GaAs, Ga(As, P), or Si, have been investigated, and their performance characteristics are summarized. NEA Si cold cathodes have been incorporated in developmental TV camera tubes. The characteristics of these tubes are reviewed.

[1]  Ho-Chung Huang,et al.  Current-gain characteristics of Schottky-barrier and p-n junction electron-beam semiconductor diodes , 1974 .

[2]  J. Pankove,et al.  Photoemission from GaN , 1974 .

[3]  E. Savoye,et al.  Application of negative electron affinity materials to imaging devices , 1974 .

[4]  H. Kalweit,et al.  Backscattered electrons from semiconductors and their effect on the resolution of TSEM , 1973 .

[5]  R. Martinelli Effects of cathode bumpiness on the spatial resolution of proximity focused image tubes. , 1973, Applied optics.

[6]  B. Miller,et al.  Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers , 1973 .

[7]  E. Kohn The silicon cold cathode , 1973 .

[8]  R. Bell,et al.  THE III-V PHOTOCATHODE: A MAJOR DETECTOR DEVELOPMENT , 1972 .

[9]  A. Milnes,et al.  Heterojunction Photocathode Concepts , 1971 .

[10]  B. F. Williams,et al.  Current status of negative electron affinity devices , 1971 .

[11]  Elliott S. Kohn,et al.  Current Crowding in a Circular Geometry , 1971 .

[12]  G. Allen The performance of negative electron affinity photocathodes , 1971 .

[13]  L. W. James,et al.  Behavior of Cesium Oxide as a Low Work‐Function Coating , 1970 .

[14]  S. Garbe CsF, Cs as a low work function layer on the GaAs photocathode , 1970 .

[15]  William E. Spicer,et al.  QUANTUM YIELD OF GaAs SEMITRANSPARENT PHOTOCATHODE , 1970 .

[16]  H. Krall,et al.  Recent Developments in GaP(Cs)-Dynode Photomultipliers , 1970 .

[17]  L. R. Weisberg,et al.  AN OPTOELECTRONIC COLD CATHODE USING AN AlxGa1−xAs HETEROJUNCTION STRUCTURE , 1970 .

[18]  L. W. James,et al.  Liquid Epitaxial Growth of GaAsSb and Its Use as a High‐Efficiency, Long‐Wavelength Threshold Photoemitter , 1970 .

[19]  R. Martinelli INFRARED PHOTOEMISSION FROM SILICON , 1970 .

[20]  B. F. Williams,et al.  GaAs1−xPx AS A NEW HIGH QUANTUM YIELD PHOTOEMISSIVE MATERIAL FOR THE VISIBLE SPECTRUM , 1969 .

[21]  H. Sonnenberg LOW‐WORK‐FUNCTION SURFACES FOR NEGATIVE‐ELECTRON‐AFFINITY PHOTOEMITTERS , 1969 .

[22]  B. F. Williams,et al.  ELECTRON EMISSION FROM A ``COLD‐CATHODE'' GaAs p‐n JUNCTION , 1969 .

[23]  B. F. Williams,et al.  NEW HIGH-GAIN DYNODE FOR PHOTOMULTIPLIERS. , 1968 .

[24]  R. Bell,et al.  Improved photoemitters using GaAs and InGaAs , 1968 .

[25]  Claude A. Klein,et al.  Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors , 1968 .

[26]  R. Bell,et al.  PHOTOEMISSION FROM InP‐Cs‐O , 1968 .

[27]  A A Turnbull,et al.  Photoemission from GaAs-Cs-O , 1968 .

[28]  J. J. Scheer,et al.  Fermi level stabilization at cesiated semiconductor surfaces , 1967 .

[29]  H. Kressel,et al.  The Effective Ionization Rate for Hot Carriers in GaAs , 1966 .

[30]  D. Kyser,et al.  Cathodoluminescence at p‐n Junctions in GaAs , 1965 .

[31]  C. Feldman Range of 1-10 kev Electrons in Solids , 1960 .

[32]  A. B. Laponsky,et al.  Secondary Electron Emission from MgO Thin Films , 1959 .

[33]  U. Fano Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .

[34]  A. Sommer Stability of photocathodes. , 1973, Applied optics.

[35]  H. Krall,et al.  Recent Work on Fast Photomultipliers Utilizing GaP(Cs) Dynodes , 1972 .

[36]  C. Syms Gallium Arsenide Thin-film Photocathodes , 1969 .

[37]  D. V. Geppert A proposed p-n junction cathode , 1966 .

[38]  J. R. Prescott,et al.  A statistical model for photomultiplier single-electron statistics , 1966 .