The application of semiconductors with negative electron affinity surfaces to electron emission devices
暂无分享,去创建一个
[1] Ho-Chung Huang,et al. Current-gain characteristics of Schottky-barrier and p-n junction electron-beam semiconductor diodes , 1974 .
[2] J. Pankove,et al. Photoemission from GaN , 1974 .
[3] E. Savoye,et al. Application of negative electron affinity materials to imaging devices , 1974 .
[4] H. Kalweit,et al. Backscattered electrons from semiconductors and their effect on the resolution of TSEM , 1973 .
[5] R. Martinelli. Effects of cathode bumpiness on the spatial resolution of proximity focused image tubes. , 1973, Applied optics.
[6] B. Miller,et al. Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers , 1973 .
[7] E. Kohn. The silicon cold cathode , 1973 .
[8] R. Bell,et al. THE III-V PHOTOCATHODE: A MAJOR DETECTOR DEVELOPMENT , 1972 .
[9] A. Milnes,et al. Heterojunction Photocathode Concepts , 1971 .
[10] B. F. Williams,et al. Current status of negative electron affinity devices , 1971 .
[11] Elliott S. Kohn,et al. Current Crowding in a Circular Geometry , 1971 .
[12] G. Allen. The performance of negative electron affinity photocathodes , 1971 .
[13] L. W. James,et al. Behavior of Cesium Oxide as a Low Work‐Function Coating , 1970 .
[14] S. Garbe. CsF, Cs as a low work function layer on the GaAs photocathode , 1970 .
[15] William E. Spicer,et al. QUANTUM YIELD OF GaAs SEMITRANSPARENT PHOTOCATHODE , 1970 .
[16] H. Krall,et al. Recent Developments in GaP(Cs)-Dynode Photomultipliers , 1970 .
[17] L. R. Weisberg,et al. AN OPTOELECTRONIC COLD CATHODE USING AN AlxGa1−xAs HETEROJUNCTION STRUCTURE , 1970 .
[18] L. W. James,et al. Liquid Epitaxial Growth of GaAsSb and Its Use as a High‐Efficiency, Long‐Wavelength Threshold Photoemitter , 1970 .
[19] R. Martinelli. INFRARED PHOTOEMISSION FROM SILICON , 1970 .
[20] B. F. Williams,et al. GaAs1−xPx AS A NEW HIGH QUANTUM YIELD PHOTOEMISSIVE MATERIAL FOR THE VISIBLE SPECTRUM , 1969 .
[21] H. Sonnenberg. LOW‐WORK‐FUNCTION SURFACES FOR NEGATIVE‐ELECTRON‐AFFINITY PHOTOEMITTERS , 1969 .
[22] B. F. Williams,et al. ELECTRON EMISSION FROM A ``COLD‐CATHODE'' GaAs p‐n JUNCTION , 1969 .
[23] B. F. Williams,et al. NEW HIGH-GAIN DYNODE FOR PHOTOMULTIPLIERS. , 1968 .
[24] R. Bell,et al. Improved photoemitters using GaAs and InGaAs , 1968 .
[25] Claude A. Klein,et al. Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors , 1968 .
[26] R. Bell,et al. PHOTOEMISSION FROM InP‐Cs‐O , 1968 .
[27] A A Turnbull,et al. Photoemission from GaAs-Cs-O , 1968 .
[28] J. J. Scheer,et al. Fermi level stabilization at cesiated semiconductor surfaces , 1967 .
[29] H. Kressel,et al. The Effective Ionization Rate for Hot Carriers in GaAs , 1966 .
[30] D. Kyser,et al. Cathodoluminescence at p‐n Junctions in GaAs , 1965 .
[31] C. Feldman. Range of 1-10 kev Electrons in Solids , 1960 .
[32] A. B. Laponsky,et al. Secondary Electron Emission from MgO Thin Films , 1959 .
[33] U. Fano. Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .
[34] A. Sommer. Stability of photocathodes. , 1973, Applied optics.
[35] H. Krall,et al. Recent Work on Fast Photomultipliers Utilizing GaP(Cs) Dynodes , 1972 .
[36] C. Syms. Gallium Arsenide Thin-film Photocathodes , 1969 .
[37] D. V. Geppert. A proposed p-n junction cathode , 1966 .
[38] J. R. Prescott,et al. A statistical model for photomultiplier single-electron statistics , 1966 .