R-Map: A Map Metaphor for Visualizing Information Reposting Process in Social Media

We propose R-Map (Reposting Map), a visual analytical approach with a map metaphor to support interactive exploration and analysis of the information reposting process in social media. A single original social media post can cause large cascades of repostings (i.e., retweets) on online networks, involving thousands, even millions of people with different opinions. Such reposting behaviors form the reposting tree, in which a node represents a message and a link represents the reposting relation. In R-Map, the reposting tree structure can be spatialized with highlighted key players and tiled nodes. The important reposting behaviors, the following relations and the semantics relations are represented as rivers, routes and bridges, respectively, in a virtual geographical space. R-Map supports a scalable overview of a large number of information repostings with semantics. Additional interactions on the map are provided to support the investigation of temporal patterns and user behaviors in the information diffusion process. We evaluate the usability and effectiveness of our system with two use cases and a formal user study.

[1]  André Skupin,et al.  From metaphor to method: cartographic perspectives on information visualization , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[2]  Yang Liu,et al.  Who Influenced You? Predicting Retweet via Social Influence Locality , 2015, ACM Trans. Knowl. Discov. Data.

[3]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[4]  Xiaohua Sun,et al.  Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time , 2012, IEEE Transactions on Visualization and Computer Graphics.

[5]  Hans-Jörg Schulz,et al.  Treevis.net: A Tree Visualization Reference , 2011, IEEE Computer Graphics and Applications.

[6]  Ed H. Chi,et al.  Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[7]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[8]  Yifan Hu,et al.  GMap: Visualizing graphs and clusters as maps , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[9]  Fangzhao Wu,et al.  OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[10]  K. Thyng,et al.  True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection , 2016 .

[11]  Yale Song,et al.  #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[12]  Helen Couclelis,et al.  Worlds of Information: The Geographic Metaphor in the Visualization of Complex Information , 1998 .

[13]  Qiaoming Zhu,et al.  Visual analysis of micro-blog retweeting using an information diffusion function , 2016, J. Vis..

[14]  Padraic Neville,et al.  A comparison of 2-D visualizations of hierarchies , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[15]  David H. Uttal,et al.  A Cross‐Cultural Study of Young Children's Mapping Abilities , 1998 .

[16]  David J. Ketchen,et al.  THE APPLICATION OF CLUSTER ANALYSIS IN STRATEGIC MANAGEMENT RESEARCH: AN ANALYSIS AND CRITIQUE , 1996 .

[17]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[18]  Shou-De Lin,et al.  Modeling and Visualizing Information Propagation in a Micro-blogging Platform , 2011, 2011 International Conference on Advances in Social Networks Analysis and Mining.

[19]  Jie Li,et al.  Supporting Story Synthesis: Bridging the Gap between Visual Analytics and Storytelling , 2020, IEEE Transactions on Visualization and Computer Graphics.

[20]  Loukas Lazos,et al.  IMap: visualizing network activity over internet maps , 2014, VizSec '14.

[21]  Masahiro Kimura,et al.  Prediction of Information Diffusion Probabilities for Independent Cascade Model , 2008, KES.

[22]  D. Auber,et al.  GosperMap: Using a Gosper Curve for Laying Out Hierarchical Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  Panagiotis Takis Metaxas,et al.  What Do Retweets Indicate? Results from User Survey and Meta-Review of Research , 2015, ICWSM.

[24]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[25]  Yale Song,et al.  One-Class Conditional Random Fields for Sequential Anomaly Detection , 2013, IJCAI.

[26]  Ulrik Brandes,et al.  Eigensolver Methods for Progressive Multidimensional Scaling of Large Data , 2006, GD.

[27]  M. Balzer,et al.  Voronoi treemaps , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[28]  Daniel Fried,et al.  Maps of Computer Science , 2013, 2014 IEEE Pacific Visualization Symposium.

[29]  Jean-Philippe Domenger,et al.  Bubble Tree Drawing Algorithm , 2004, ICCVG.

[30]  Mao Lin Huang,et al.  Navigation in large hierarchical graph through chain-context views , 2016, J. Vis..

[31]  Daniel A. Keim,et al.  A Survey on Visual Analytics of Social Media Data , 2016, IEEE Transactions on Multimedia.

[32]  Martin Wattenberg,et al.  Google+Ripples: a native visualization of information flow , 2013, WWW '13.

[33]  Yifan Hu,et al.  Visualizing Streaming Text Data with Dynamic Graphs and Maps , 2012, GD.

[34]  Xin Zhang,et al.  WeiboEvents: A Crowd Sourcing Weibo Visual Analytic System , 2014, 2014 IEEE Pacific Visualization Symposium.

[35]  Min Chen,et al.  Modeling for Information Diffusion in Online Social Networks via Hydrodynamics , 2017, IEEE Access.

[36]  J. V. van Wijk,et al.  Cushion treemaps: visualization of hierarchical information , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[37]  Yong-Jin Liu,et al.  Visualizing and Analyzing Video Content With Interactive Scalable Maps , 2016, IEEE Transactions on Multimedia.

[38]  Xiaoru Yuan,et al.  11 DMap + : Interactive Visual Analysis and Exploration of Egocentric and Event-centric Information Diffusion Patterns in Social Media , 2018 .

[39]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[40]  Sara Irina Fabrikant,et al.  Spatialization Methods: A Cartographic Research Agenda for Non-geographic Information Visualization , 2003 .

[41]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[42]  Hongan Wang,et al.  Visualization of large hierarchical data by circle packing , 2006, CHI.

[43]  Heidrun Schumann,et al.  The Design Space of Implicit Hierarchy Visualization: A Survey , 2011, IEEE Transactions on Visualization and Computer Graphics.

[44]  Xiaotong Liu,et al.  CompactMap: A mental map preserving visual interface for streaming text data , 2013, 2013 IEEE International Conference on Big Data.

[45]  Xiaoru Yuan,et al.  Social Media Visual Analytics , 2017, Comput. Graph. Forum.

[46]  Xiaoru Yuan,et al.  E-Map: A Visual Analytics Approach for Exploring Significant Event Evolutions in Social Media , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[47]  P. Lazarsfeld,et al.  Personal Influence: The Part Played by People in the Flow of Mass Communications , 1956 .

[48]  Xiaoru Yuan,et al.  D-Map: Visual analysis of ego-centric information diffusion patterns in social media , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[49]  André Skupin,et al.  A cartographic approach to visualizing conference abstracts , 2002 .

[50]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.