Computing Palindromic Factorizations and Palindromic Covers On-line

A palindromic factorization of a string w is a factorization of w consisting only of palindromic substrings of w. In this paper, we present an on-line O(n logn)-time O(n)-space algorithm to compute smallest palindromic factorizations of all prefixes of w, where n is the length of a given string w. We then show how to extend this algorithm to compute smallest maximal palindromic factorizations of all prefixes of w, consisting only of maximal palindromes (non-extensible palindromic substring) of each prefix, in O(n logn) time and O(n) space, in an on-line manner. We also present an on-line O(n)-time O(n)-space algorithm to compute a smallest palindromic cover of w.

[1]  Wojciech Rytter,et al.  Text Algorithms , 1994 .

[2]  Lucian Ilie,et al.  A comparison of index-based lempel-Ziv LZ77 factorization algorithms , 2012, CSUR.

[3]  Tatiana Starikovskaya Computing Lempel-Ziv Factorization Online , 2012, MFCS.

[4]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[5]  Stephen Alstrup,et al.  Improved Algorithms for Finding Level Ancestors in Dynamic Trees , 2000, ICALP.

[6]  Hideo Bannai,et al.  Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text , 2013, SPIRE.

[7]  Hideo Bannai,et al.  Faster Compact On-Line Lempel-Ziv Factorization , 2014, STACS.

[8]  Simon J. Puglisi,et al.  Lempel-Ziv factorization: Simple, fast, practical , 2013, ALENEX.

[9]  Zvi Galil,et al.  Parallel Detection of all Palindromes in a String , 1995, Theor. Comput. Sci..

[10]  Hideo Bannai,et al.  Simpler and Faster Lempel Ziv Factorization , 2013, 2013 Data Compression Conference.

[11]  Gad M. Landau,et al.  A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices , 2003, SIAM J. Comput..

[12]  Juha Kärkkäinen,et al.  Linear Time Lempel-Ziv Factorization: Simple, Fast, Small , 2012, CPM.

[13]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .

[14]  Juha Kärkkäinen,et al.  Lightweight Lempel-Ziv Parsing , 2013, SEA.

[15]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[16]  Manfred Kufleitner On Bijective Variants of the Burrows-Wheeler Transform , 2009, Stringology.

[17]  Kunihiko Sadakane,et al.  An Online Algorithm for Finding the Longest Previous Factors , 2008, ESA.

[18]  Costas S. Iliopoulos,et al.  Maximal Palindromic Factorization , 2013, Stringology.

[19]  Kunihiko Sadakane,et al.  Compressed Dynamic Tries with Applications to LZ-Compression in Sublinear Time and Space , 2007, FSTTCS.

[20]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.

[21]  Gregory Kucherov,et al.  Searching for gapped palindromes , 2008, Theor. Comput. Sci..

[22]  Glenn K. Manacher,et al.  A New Linear-Time ``On-Line'' Algorithm for Finding the Smallest Initial Palindrome of a String , 1975, JACM.

[23]  Gonzalo Navarro,et al.  LZ77-Like Compression with Fast Random Access , 2010, 2010 Data Compression Conference.

[24]  Ayumi Shinohara,et al.  Efficient algorithms to compute compressed longest common substrings and compressed palindromes , 2009, Theor. Comput. Sci..

[25]  Gregory Kucherov,et al.  Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[26]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[27]  Hideo Bannai,et al.  Computing Reversed Lempel-Ziv Factorization Online , 2013, Stringology.

[28]  Wojciech Rytter Application of Lempel-Ziv factorization to the approximation of grammar-based compression , 2003, Theor. Comput. Sci..