A Linguistic Approach to Model Urban Growth

This paper presents a linguistic approach for modeling urban growth. The authors developed a methodological framework which utilizes Fuzzy Set theory to capture and describe the effect of urban features on urban growth and applies Cellular Automata techniques to simulate urban growth. Although several approaches exist that combine Fuzzy Logic and Cellular Automata for urban growth modeling, the authors focused on the ability to use partial knowledge and combine theory-driven and data driven knowledge. To achieve this, a parallel connection between the input variables is introduced which further allows the model to disengage from severe data limitations. In this approach, a number of parallel fuzzy systems are used, each one of which focuses on different types of urban growth factors, different drivers or restrictions of development. The effects of all factors under consideration are merged into a single internal thematic layer that maps the suitability for urbanization for each area, providing thus an information flow familiar to the human conceptualization of the phenomenon. Following, cellular automata techniques are used to simulate urban growth. The proposed methodology is applied in the Mesogeia area in the Attica basin (Athens) for the period 1990-2004 and provides realistic estimations for urban growth.

[1]  Suzana Dragicevic,et al.  A fuzzy set approach for modelling time in GIS , 2000, Int. J. Geogr. Inf. Sci..

[2]  Jo Wood,et al.  Where is Helvellyn? Fuzziness of multi‐scale landscape morphometry , 2004 .

[3]  Roy George,et al.  Mining Weather Data Using Fuzzy Cluster Analysis , 2005 .

[4]  V. Miranda,et al.  Fuzzy inference applied to spatial load forecasting , 1999, PowerTech Budapest 99. Abstract Records. (Cat. No.99EX376).

[5]  Bhuvan Unhelkar,et al.  Handbook of research on green ICT : technology, business and social perspectives , 2011 .

[6]  Stuart R. Phinn,et al.  Modelling urban development with cellular automata incorporating fuzzy-set approaches , 2003, Comput. Environ. Urban Syst..

[7]  Miha Mraz,et al.  Intelligent bush fire spread prediction using fuzzy cellular automata , 1999, J. Intell. Fuzzy Syst..

[8]  Keith C. Clarke,et al.  Replication of Spatio-temporal Land Use Patterns at Three Levels of Aggregation by an Urban Cellular Automata , 2004, ACRI.

[9]  Roberto Marcondes Cesar Junior,et al.  Fuzzy Modeling and Evaluation of the Spatial Relation "Along" , 2005, CIARP.

[10]  S. Dragićević,et al.  Coupling fuzzy sets theory and GIS-based cellular automata for land-use change modeling , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[11]  Suzana Dragicevic,et al.  A fuzzy-constrained cellular automata model of forest insect infestations , 2006 .

[12]  M. SETNES,et al.  Transparent Fuzzy Modelling , 1998, Int. J. Hum. Comput. Stud..

[13]  S. Phinn,et al.  Modelling the driving forces of Sydney's urban development (1971-1996) in a cellular environment , 2005 .

[14]  Maria Petrou,et al.  An expert system with uncertain rules based on Dempster-Shafer theory , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[15]  Fulong Wu A linguistic cellular automata simulation approach for sustainable land development in a fast growing region , 1996 .

[16]  Jasper van Vliet,et al.  Assessing the Accuracy of Changes in Spatial Explicit Land Use Change Models , 2009 .

[17]  V. J. Kollias,et al.  Mapping the soil resources of a recent alluvial plain in Greece using fuzzy sets in a GIS environment , 1999 .

[18]  Suzana Dragicevic Multi-Dimensional Interpolations with Fuzzy Sets , 2005 .

[19]  Arnaldo Cecchini,et al.  Is Urban Gaming Simulation Useful? , 2001 .

[20]  Jacek Malczewski,et al.  GIS-based land-use suitability analysis: a critical overview , 2004 .

[21]  Jo Wood,et al.  Higher Order Vagueness in Geographical Information: Empirical Geographical Population of Type n Fuzzy Sets , 2007, GeoInformatica.

[22]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[23]  Yun Hariadi,et al.  Urban Area Development in Stochastic Cellular Automata , 2004 .

[24]  Lotfi A. Zadeh,et al.  Foreword: Fuzzy logic , 1993, Journal of Intelligent Information Systems.

[25]  K. Clarke,et al.  Diffusion and Coalescence of the Houston Metropolitan Area: Evidence Supporting a New Urban Theory , 2005 .

[26]  S. Kalogirou Expert systems and GIS: an application of land suitability evaluation , 2002 .

[27]  Alok Pradhan Standards and Legislation for the Carbon Economy , 2011 .

[28]  Derek A. Linkens,et al.  Rule-base self-generation and simplification for data-driven fuzzy models , 2004, Fuzzy Sets Syst..

[29]  Itzhak Benenson,et al.  Geographic Automata Systems and the OBEUS Software for Their Implementation , 2006 .

[30]  José I. Barredo,et al.  The MOLAND Modelling Framework for Urban and Regional Land Use Dynamics , 2007 .

[31]  F. Wu,et al.  Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system , 1998 .

[32]  Pascal Matsakis,et al.  Combined Extraction of Directional and Topological Relationship Information from 2D Concave Objects , 2005 .

[33]  P. Prastacos,et al.  Modeling Urban Growth using Fuzzy Cellular Automata , 2008 .

[34]  Henning Sten Hansen,et al.  A Fuzzy Logic Approach to Urban Land-Use Mapping , 2003, ScanGIS.

[35]  R. Hall,et al.  Fuzzy-logic modeling of land suitability for hybrid poplar across the Prairie Provinces of Canada , 2008, Environmental monitoring and assessment.

[36]  R. McLean Modeling of current and future state of biodiversity in Central America using GLOBIO3 methodology , 2011 .

[37]  Weldon A. Lodwick,et al.  Modelling the Fuzzy Spatial Extent of Geographical Entities , 2005 .

[38]  Suzana Dragicevic,et al.  An application of fuzzy logic reasoning for GIS temporal modeling of dynamic processes , 2000, Fuzzy Sets Syst..

[39]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[40]  S. Kratochwil,et al.  Talking Space — A Social & Fuzzy Logical GIS Perspective On Modelling Spatial Dynamics , 2005 .

[41]  S. Albeverio,et al.  A Model for Urban Growth Processes with Continuum State Cellular Automata and Related Differential Equations , 2004, nlin/0408033.

[42]  Yongyut Trisurat,et al.  Land Use, Climate Change and Biodiversity Modeling: Perspectives and Applications , 2011 .

[43]  E. Heikkila,et al.  Fuzzy Urban Sets: Theory and Application to Desakota Regions in China , 2003 .

[44]  Maurizio Pollino,et al.  A GIS Based Methodology in Renewable Energy Sources Sustainability , 2014, Int. J. Agric. Environ. Inf. Syst..

[45]  Hans W. Guesgen,et al.  Fuzzy Reasoning about Geographic Regions , 2005 .