Lead evolution of the Pre-Mesozoic crust in the Central Andes (18–27°): progressive homogenisation of Pb

[1]  Robert B. Trumbull,et al.  Numerical models of crustal scale convection and partial melting beneath the Altiplano–Puna plateau , 2002 .

[2]  G. Franz,et al.  Comment on the paper "Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes" by Omarini et al. , 2001 .

[3]  J. Saavedra,et al.  Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo , 2001 .

[4]  R. Trumbull,et al.  Magmatic Evolution of the La Pacana Caldera System, Central Andes, Chile: Compositional Variation of Two Cogenetic, Large-Volume Felsic Ignimbrites , 2001 .

[5]  G. Wörner,et al.  Precambrian and Early Paleozoic evolution of the Andean basement at Belen (northern Chile) and Cerro Uyarani (western Bolivia Altiplano) , 2000 .

[6]  J. Viramonte,et al.  Proterozoic–Paleozoic development of the basement of the Central Andes (18–26°S) — a mobile belt of the South American craton , 2000 .

[7]  G. Wörner,et al.  Tracing Crustal Evolution in the Southern Central Andes from Late Precambrian to Permian with Geochemical and Nd and Pb Isotope Data , 2000, The Journal of Geology.

[8]  G. Zandt,et al.  Crustal structure of the Altiplano from broadband regional waveform modeling: Implications for the composition of thick continental crust , 2000 .

[9]  C. Haberland,et al.  The crustal structure beneath the Central Andean forearc and magmatic arc as derived from seismic studies — the PISCO 94 experiment in northern Chile (21°–23°S) , 1999 .

[10]  M. Thirlwall,et al.  Crustal Recycling of Metamorphic Basement: Late Palaeozoic Granitoids of Northern Chile (~22∞S). Implications for the Composition of the Andean Crust , 1999 .

[11]  M. Springer Interpretation of heat-flow density in the Central Andes , 1999 .

[12]  J. Viramonte,et al.  Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina , 1999 .

[13]  C. Haberland,et al.  The Central Andean Altiplano‐Puna magma body , 1999 .

[14]  G. Franz,et al.  Permian high pressure rocks—the basement of the Sierra de Limón Verde in Northern Chile , 1999 .

[15]  J. Saavedra,et al.  Early evolution of the Proto-Andean margin of South America , 1998 .

[16]  F. Hervé,et al.  Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile , 1997 .

[17]  F. Schilling,et al.  Seismic, gravity and petrological evidence for partial melt beneath the thickened Central Andean crust (21–23°S) , 1997 .

[18]  R. Trompette Neoproterozoic (∼600 Ma) aggregation of Western Gondwana: a tentative scenario , 1997 .

[19]  S. Kay,et al.  Zircon and Whole Rock Nd-Pb Isotopic Evidence for a Grenville Age and a Laurentian Origin for the Basement of the Precordillera in Argentina , 1996, The Journal of Geology.

[20]  R. Tosdal The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, w , 1996 .

[21]  T. Wallace,et al.  Anomalous crust of the Bolivian Altiplano, central Andes: Constraints from broadband regional seismic waveforms , 1996 .

[22]  S. Myers,et al.  Crustal-thickness variations in the central Andes , 1996 .

[23]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[24]  R. Harmon,et al.  Pb isotopes define basement domains of the Altiplano , 1995 .

[25]  A. H. Clark,et al.  Grenvillian granulite-facies metamorphism in the Arequipa Massif, Peru: a Laurentia-Gondwana link , 1995 .

[26]  R. Astini,et al.  The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: A geodynamic model , 1995 .

[27]  K. Mezger,et al.  Lead isotope analyses of leached feldspars: Constraints on the early crustal history of the Grenville Orogen , 1994 .

[28]  James E. Wright,et al.  LEAD MOBILIZATION DURING TECTONIC REACTIVATION OF THE WESTERN BALTIC SHIELD , 1993 .

[29]  R. Harmon,et al.  Andean Cenozoic volcanic centers reflect basement isotopic domains , 1992 .

[30]  B. D. B. Neves,et al.  Tectonic evolution of South America during the Late Proterozoic , 1991 .

[31]  S. Bowring,et al.  Lead isotopic heterogeneities within alkali feldspars: Implications for the determination of initial lead isotopic compositions , 1991 .

[32]  A. LeHuray,et al.  Lead isotope provinces of the Central Andes inferred from ores and crustal rocks , 1990 .

[33]  S. Goldstein,et al.  The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb , 1990 .

[34]  P. Francis,et al.  Petrology and geochemistry of volcanic rocks of the Cerro Galan caldera, northwest Argentina , 1989, Geological Magazine.

[35]  P. Pitfield,et al.  The proterozoic of Eastern Bolivia and its relationship to the Andean mobile belt , 1989 .

[36]  S. Kay,et al.  Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the Middle Proterozoic in North America? , 1989 .

[37]  C. Tassinari,et al.  A review of the geochronology of the Amazonian Craton: Tectonic implications , 1989 .

[38]  S. M. Haines,et al.  The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs - A case for bi-directional transport , 1988 .

[39]  W. Hildreth,et al.  Crustal contributions to arc magmatism in the Andes of Central Chile , 1988 .

[40]  S. Kay,et al.  Paleozoic terranes of the central Argentine‐Chilean Andes , 1986 .

[41]  S. Goldstein,et al.  A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .

[42]  B. Doe,et al.  Plumbotectonics-the model , 1981 .

[43]  G. Tilton,et al.  Origin of lead in andean calc-alkaline lavas, southern peru. , 1980, Science.

[44]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[45]  R. Zartman Lead Isotopic provinces in the Cordillera of the Western United States and their Geologic Significance , 1974 .

[46]  J. Saavedra,et al.  The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba , 1998, Geological Society, London, Special Publications.

[47]  B. Coira,et al.  Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes , 1996 .

[48]  J. Viramonte,et al.  Variation in the Crustal Structure of the Southern Central Andes Deduced from Seismic Refraction Investigations , 1994 .

[49]  K. Reutter,et al.  Tectonics of the Southern Central Andes , 1994 .

[50]  R. Harmon,et al.  Some Isotopic and Geochemical Constraints on the Origin and Evolution of the Central Andean Basement (19°–24°S) , 1994 .

[51]  J. Saavedra,et al.  Granite plutonism of the Sierras Pampeanas; An inner cordilleran Paleozoic arc in the southern Andes , 1990 .

[52]  R. Harmon,et al.  Pre-Mesozoic evolution of the central Andes; The basement revisited , 1990 .

[53]  T. K. Kyser,et al.  Stable isotope variations in the mantle , 1986 .

[54]  A. Toselli,et al.  Geología del noroeste argentino , 1981 .