Estimating the DOA and the Polarization of a Polynomial-Phase Signal Using a Single Polarized Vector-Sensor

This paper introduces a novel algorithm to estimate the direction-of-arrival (DOA) and the polarization of a completely-polarized polynomial-phase signal of an arbitrary degree. The algorithm utilizes a polarized vector-sensor, comprising a spatially collocated six-component electromagnetic vector-sensor, a dipole triad, or a loop triad. This ESPRIT-based algorithm is based on a time-invariant matrix-pencil pair, derived from the time-delayed data-sets collected by a single polarized vector-sensor. The high-order difference-function of the signal's phase constructs the invariant-factor used in the ESPRIT algorithm. The steering vector is estimated from the signal-subspace eigenvector of the data-correlation matrix, following which the closed-form DOA and polarization can be obtained. Given the degree of the polynomial-phase signal, this approach resolves the two-dimensional azimuth-elevation angle and the polarization of the source, and requires neither a priori knowledge of the polynomial-phase signal's coefficients nor a priori knowledge of the polynomial-phase signal's frequency-spectrum. The efficacy of the proposed algorithm is verified by Monte Carlo simulations. Estimation accuracies of the DOA and the polarization parameters are evaluated by the closed-form Cramér-Rao bounds, which are independent of the polynomial coefficients, the degree of the polynomial-phase signal, and the azimuth-angle of the source.

[1]  B. Friedlander,et al.  Multicomponent signal analysis using the polynomial-phase transform , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[2]  A. W. Rihaczek Principles of high-resolution radar , 1969 .

[3]  K. T. Wong,et al.  Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace , 2000 .

[4]  Albert H. Nuttall,et al.  Efficient evaluation of polynomials and exponentials of polynomials for equispaced arguments , 1987, IEEE Trans. Acoust. Speech Signal Process..

[5]  Braham Barkat,et al.  Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: statistical performance in the presence of additive gaussian noise , 1999, IEEE Trans. Signal Process..

[6]  Messaoud Benidir,et al.  Polynomial phase signal analysis based on the polynomial derivatives decompositions , 1999, IEEE Trans. Signal Process..

[7]  K. T. Wong,et al.  Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation , 1997 .

[8]  Douglas A. Gray,et al.  Performance bounds for polynomial phase parameter estimation with nonuniform and random sampling schemes , 2000, IEEE Trans. Signal Process..

[9]  Zhou Xin,et al.  2-D DOA and polarization estimation of LFM signals with one electromagnetic vector sensor , 2008, 2008 9th International Conference on Signal Processing.

[10]  Gerard Ledwich,et al.  A computationally efficient technique for estimating the parameters of polynomial-phase signals from noisy observations , 2005, IEEE Transactions on Signal Processing.

[11]  Peter James Kootsookos,et al.  An extended Kalman filter for demodulation of polynomial phase signals , 1998, IEEE Signal Processing Letters.

[12]  Jin He,et al.  Polarization Difference Smoothing for Direction Finding of Coherent Signals , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Georgios B. Giannakis,et al.  Estimating random amplitude polynomial phase signals: a cyclostationary approach , 1995, IEEE Trans. Signal Process..

[14]  I. Vaughan L. Clarkson,et al.  Identifiability and Aliasing in Polynomial-Phase Signals , 2009, IEEE Transactions on Signal Processing.

[15]  Abdelhak M. Zoubir,et al.  Estimation of Multicomponent Polynomial Phase Signals With Missing Observations , 2008, IEEE Transactions on Signal Processing.

[16]  K. T. Wong,et al.  Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations , 2000 .

[17]  K.T. Wong,et al.  CRB: Sinusoid-Sources' Estimation using Collocated Dipoles/Loops , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[19]  Arye Nehorai,et al.  Polarimetric modeling and parameter estimation with applications to remote sensing , 1995, IEEE Trans. Signal Process..

[20]  Yingning Peng,et al.  Outlier probability of generalized chirpogram-based estimators for multicomponent polynomial-phase signals , 2005, IEEE Transactions on Signal Processing.

[21]  Boualem Boashash,et al.  Comments on "The Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase" , 1998, IEEE Trans. Signal Process..

[22]  Michael D. Zoltowski,et al.  Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid , 2000, IEEE Trans. Signal Process..

[23]  Richard Andrew Wiltshire,et al.  A New Class of Multilinear Functions for Polynomial Phase Signal Analysis , 2009, IEEE Transactions on Signal Processing.

[24]  G.T. Zhou,et al.  Exploring lag diversity in the high-order ambiguity function for polynomial phase signals , 1997, IEEE Signal Processing Letters.

[25]  A. Nehorai,et al.  Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Alle-Jan van der Veen,et al.  A Low Complexity Blind Estimator of Narrowband Polynomial Phase Signals , 2010, IEEE Transactions on Signal Processing.

[27]  J. Compton The tripole antenna: An adaptive array with full polarization flexibility , 1981 .

[28]  Joseph Tabrikian,et al.  Source localization using vector sensor array in a multipath environment , 2004, IEEE Transactions on Signal Processing.

[29]  Bjorn Ottersten,et al.  Performance analysis of the total least squares ESPRIT algorithm , 1991, IEEE Trans. Signal Process..

[30]  Jakob Ängeby Aliasing of polynomial-phase signal parameters , 2000, IEEE Trans. Signal Process..

[31]  Peter O'Shea,et al.  On Refining Polynomial Phase Signal Parameter Estimates , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[32]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[33]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[34]  Benjamin Friedlander,et al.  A modification of the discrete polynomial transform , 1998, IEEE Trans. Signal Process..

[35]  Abdelhak M. Zoubir,et al.  Bootstrap modeling of a class of nonstationary signals , 2000, IEEE Trans. Signal Process..

[36]  Igor Djurovic,et al.  Nonparametric if and DOA estimation , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[37]  Igor Djurovic,et al.  Performance of Instantaneous Frequency Rate Estimation Using High-Order Phase Function , 2010, IEEE Transactions on Signal Processing.

[38]  Adel Belouchrani,et al.  Estimation of Multicomponent Polynomial-Phase Signals Impinging on a Multisensor Array Using State–Space Modeling , 2007, IEEE Transactions on Signal Processing.

[39]  Mark R. Morelande,et al.  On the performance of cyclic moments-based parameter estimators of amplitude modulated polynomial phase signals , 2002, IEEE Trans. Signal Process..

[40]  Nicolas Le Bihan,et al.  MUSIC Algorithm for Vector-Sensors Array Using Biquaternions , 2007, IEEE Transactions on Signal Processing.

[41]  Mats Viberg,et al.  Long-Range Channel Prediction Based on Nonstationary Parametric Modeling , 2009, IEEE Transactions on Signal Processing.

[42]  Kainam Thomas Wong Blind beamforming/geolocation for wideband-FFHs with unknown hop-sequences , 2001 .

[43]  Alon Amar Efficient Estimation of a Narrow-Band Polynomial Phase Signal Impinging on a Sensor Array , 2010, IEEE Transactions on Signal Processing.

[44]  Peter Händel,et al.  Multicomponent polynomial phase signal analysis using a tracking algorithm , 1999, IEEE Trans. Signal Process..

[45]  J. Li Direction and polarization estimation using arrays with small loops and short dipoles , 1993 .

[46]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[47]  Jianyu Yang,et al.  Generalized High-Order Phase Function for Parameter Estimation of Polynomial Phase Signal , 2008, IEEE Transactions on Signal Processing.

[48]  Anna Scaglione,et al.  On the spectral properties of polynomial-phase signals , 1998, IEEE Signal Processing Letters.

[49]  Stuart Golden Estimation and statistical analysis for exponential polynomial signals , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[50]  Shahrokh Valaee,et al.  Localization of wideband signals using least-squares and total least-squares approaches , 1999, IEEE Trans. Signal Process..

[51]  Michael D. Zoltowski,et al.  Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[52]  Anna Scaglione,et al.  Product high-order ambiguity function for multicomponent polynomial-phase signal modeling , 1998, IEEE Trans. Signal Process..

[53]  Karim Abed-Meraim,et al.  Estimating the parameters of chirp signals: an iterative approach , 1998, IEEE Trans. Signal Process..

[54]  Joseph M. Francos,et al.  Parameter estimation of 2-D random amplitude polynomial-phase signals , 1999, IEEE Trans. Signal Process..

[55]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[56]  Ning Ma,et al.  Ambiguity-function-based techniques to estimate DOA of broadband chirp signals , 2006, IEEE Transactions on Signal Processing.

[57]  Nicolas Le Bihan,et al.  Quaternion-MUSIC for vector-sensor array processing , 2006, IEEE Transactions on Signal Processing.

[58]  Li Jun,et al.  Parameter estimation of wideband cyclostationary sources based on uni-vector-sensor , 2008, 2008 27th Chinese Control Conference.

[59]  Boaz Porat,et al.  Estimation and Classification of Signals with Polynomial Phase , 1989, The Sixteenth Conference of Electrical and Electronics Engineers in Israel,.

[60]  Björn E. Ottersten,et al.  Chirp parameter estimation from a sample covariance matrix , 2001, IEEE Trans. Signal Process..

[61]  Benjamin Friedlander,et al.  The achievable accuracy in estimating the instantaneous phase and frequency of a constant amplitude signal , 1993, IEEE Trans. Signal Process..

[62]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[63]  Marius Pesavento,et al.  Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays , 2001, IEEE Trans. Signal Process..

[64]  K.T. Wong,et al.  Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[65]  Xin Yuan,et al.  “Vector Cross-Product Direction-Finding” With an Electromagnetic Vector-Sensor of Six Orthogonally Oriented But Spatially Noncollocating Dipoles/Loops , 2011, IEEE Transactions on Signal Processing.

[66]  Wong,et al.  Root-MUSIC-based direction-finding and polarization estimation using diversely polarized possibly collocated antennas , 2004, IEEE Antennas and Wireless Propagation Letters.

[67]  Sergio Barbarossa,et al.  Analysis of polynomial-phase signals by the integrated generalized ambiguity function , 1997, IEEE Trans. Signal Process..

[68]  Hing-Cheung So,et al.  Subspace-Based Algorithm for Parameter Estimation of Polynomial Phase Signals , 2008, IEEE Transactions on Signal Processing.

[69]  Michael D. Zoltowski,et al.  ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors , 2000, IEEE Trans. Signal Process..

[70]  Arye Nehorai,et al.  Separation and tracking of multiple broadband sources with one electromagnetic vector sensor , 2002 .

[71]  G. Phillips Interpolation and Approximation by Polynomials , 2003 .

[72]  K. T. Wong Direction finding/polarization estimation-dipole and/or loop triad(s) , 2001 .

[73]  Jr. R. Compton,et al.  The performance of a tripole adaptive array against cross-polarized jamming , 1983 .

[74]  Mark R. Morelande,et al.  Model selection of random amplitude polynomial phase signals , 2002, IEEE Trans. Signal Process..

[75]  Jianyu Yang,et al.  Instantaneous Frequency Rate Estimation for High-Order Polynomial-Phase Signals , 2009, IEEE Signal Processing Letters.

[76]  Abdelhak M. Zoubir,et al.  Analysis of Multicomponent Polynomial Phase Signals , 2007, IEEE Transactions on Signal Processing.

[77]  Meryem Jabloun,et al.  A New Flexible Approach to Estimate the IA and IF of Nonstationary Signals of Long-Time Duration , 2007, IEEE Transactions on Signal Processing.

[78]  M.G. Amin,et al.  Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions , 2000, IEEE Signal Processing Letters.