Solar Observations with Single-Dish INAF Radio Telescopes: Continuum Imaging in the 18 – 26 GHz Range

[1]  Francesco Berrilli,et al.  Current state and perspectives of Space Weather science in Italy , 2020 .

[2]  J. Raulin,et al.  Spectral signature of solar active region in millimetre and submillimetre wavelengths , 2020 .

[3]  C. Alissandrakis Structure of the Solar Atmosphere: A Radio Perspective , 2020, Frontiers in Astronomy and Space Sciences.

[4]  M. N. Iacolina,et al.  New high-frequency radio observations of the Cygnus Loop supernova remnant with the Italian radio telescopes , 2020, 2009.09948.

[5]  C. G. Giménez de Castro,et al.  The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24 , 2020, The Astrophysical Journal.

[6]  M. Marengoni,et al.  Correlations of Sunspot Physical Characteristics during Solar Cycle 23 , 2020, Solar Physics.

[7]  M. Kazachenko,et al.  Active Region Irradiance during Quiescent Periods: New Insights from Sun-as-a-star Spectra , 2020, The Astrophysical Journal.

[8]  A. Nindos,et al.  Incoherent Solar Radio Emission , 2020, Frontiers in Astronomy and Space Sciences.

[9]  M. Tornikoski,et al.  Identifying 8 mm Radio Brightenings During the Solar Activity Minimum , 2020, Solar Physics.

[10]  B. Dabrowski,et al.  Interferometric imaging with LOFAR remote baselines of the fine structures of a solar type-IIIb radio burst , 2020, Astronomy & Astrophysics.

[11]  C. Guidorzi,et al.  Methods for detection and analysis of weak radio sources with single-dish radio telescopes , 2020, Experimental Astronomy.

[12]  Ole Streicher,et al.  SunPy: A Python package for Solar Physics , 2020, J. Open Source Softw..

[13]  Kevin Reardon,et al.  The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package , 2020, The Astrophysical Journal.

[14]  C. G. Giménez de Castro,et al.  The Solar Radius at 37 GHz Through Cycles 22 to 24 , 2019, Solar Physics.

[15]  Йан Йихуа,et al.  Scale sequentially CLEAN for Mingantu Spectral Radioheliograph , 2019, Solar-Terrestrial Physics.

[16]  M. Loukitcheva First solar observations with ALMA , 2018, Advances in Space Research.

[17]  A. Kosovichev,et al.  Cyclic Changes of the Sun’s Seismic Radius , 2018, The Astrophysical Journal.

[18]  M. N. Iacolina,et al.  Investigating the high-frequency spectral features of SNRs Tycho, W44, and IC443 with the Sardinia Radio Telescope , 2018, 1805.04376.

[19]  A. Pellizzoni,et al.  SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA) , 2018 .

[20]  M. C. Toribio,et al.  Shock Location and CME 3-D Reconstruction of a Solar Type II Radio Burst with LOFAR , 2018, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC).

[21]  A. Valio,et al.  Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity , 2017, 1712.06771.

[22]  M. Tornikoski,et al.  Eruptive Solar Prominence at 37 GHz , 2017 .

[23]  Marlon Núñez,et al.  Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events , 2017 .

[24]  A. Melis,et al.  Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 and 7 GHz , 2017, 1705.06886.

[25]  S. White,et al.  Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping , 2017, Solar Physics.

[26]  G. Comoretto,et al.  The Sardinia Radio Telescope - From a technological project to a radio observatory , 2017, 1703.09673.

[27]  R. Perley,et al.  An Accurate Flux Density Scale from 50 MHz to 50 GHz , 2016, 1609.05940.

[28]  M. Messerotti Radio science for space weather , 2016, 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC).

[29]  N. Gopalswamy Solar activity studies using microwave imaging observations , 2016, 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC).

[30]  A. Norton,et al.  THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015 , 2016, 1603.02552.

[31]  A. Melis,et al.  Sardinia Radio Telescope: General Description, Technical Commissioning and First Light , 2015, 1603.06134.

[32]  E. Vinyaĭkin Frequency dependence of the evolution of the radio emission of the supernova remnant Cas A , 2014 .

[33]  C. G. Giménez de Castro,et al.  THE 17 GHz ACTIVE REGION NUMBER , 2014, 1406.2252.

[34]  Xudong Sun,et al.  SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH , 2013 .

[35]  K. Shibasaki Long-Term Global Solar Activity Observed by the Nobeyama Radioheliograph (Special Issue : Twenty Years of Nobeyama Radioheliograph) , 2013 .

[36]  V. E. Abramov-Maximov,et al.  Long-Term Oscillations of Sunspots from Simultaneous Observations with the Nobeyama Radioheliograph and Solar Dynamics Observatory (Special Issue : Twenty Years of Nobeyama Radioheliograph) , 2013 .

[37]  A. N. Korzhavin,et al.  Local maximum in the microwave spectrum of solar active regions as a factor in predicting powerful flares , 2012, Geomagnetism and Aeronomy.

[38]  I. Podgorny,et al.  Magnetohydrodynamic simulation of a solar flare: 2. Flare model and simulation using active-region magnetic maps , 2012, Geomagnetism and Aeronomy.

[39]  A. Stupishin,et al.  On Magnetic Fields of Active Regions at Coronal Heights , 2012 .

[40]  Kiyoto Shibasaki,et al.  Radio Emission of the Quiet Sun and Active Regions (Invited Review) , 2011 .

[41]  C. G. Giménez de Castro,et al.  THE BEHAVIOR OF THE 17 GHz SOLAR RADIUS AND LIMB BRIGHTENING IN THE SPOTLESS MINIMUM XXIII/XXIV , 2011 .

[42]  A. Jaffey,et al.  Heliophysics Event Knowledgebase for the Solar Dynamics Observatory (SDO) and Beyond , 2010, Solar Physics.

[43]  A. Thompson,et al.  The Atacama Large Millimeter/Submillimeter Array , 2009, Proceedings of the IEEE.

[44]  Joaquim E. R. Costa,et al.  Solar atmospheric model over a highly polarized 17 GHz active region , 2008 .

[45]  Robert N. Martin,et al.  New telescopes for ground-based solar observations at submillimeter and mid-infrared , 2008, Astronomical Telescopes + Instrumentation.

[46]  E. Landi,et al.  The Quiet-Sun Differential Emission Measure from Radio and UV Measurements , 2008 .

[47]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .

[48]  Jeongwoo Lee Radio Emissions from Solar Active Regions , 2007 .

[49]  M. Barbera,et al.  The X-Ray Telescope (XRT) for the Hinode Mission , 2007 .

[50]  W. Thompson Coordinate systems for solar image data , 2006 .

[51]  P. Chainais,et al.  Segmentation of EIT images using fuzzy clustering. A preliminary study , 2005 .

[52]  Joaquim E. R. Costa,et al.  Diffuse Component Spectra of Solar Active Regions at Submillimeter Wavelengths , 2005 .

[53]  Joaquim E. R. Costa,et al.  Solar atmospheric model with spicules applied to radio observation , 2005 .

[54]  R. I. Bush,et al.  On the Constancy of the Solar Diameter , 2004 .

[55]  S. V. Lesovoi,et al.  The Siberian Solar Radio Telescope: the current state of the instrument, observations, and data , 2003 .

[56]  T. Yokoyama Magnetohydrodynamic Simulation of a Solar Flare , 2002 .

[57]  G. Gelfreikh,et al.  Spatially resolved microwave oscillations above a sunspot , 2002 .

[58]  K. Tapping,et al.  Sources of the Slowly-Varying Component of Solar Microwave Emission and their Relationship with their Host Active Regions , 2001 .

[59]  J. Raulin,et al.  A Radio Study of the Evolution of Spatial Structure of an Active Region and Flare Productivity , 2001 .

[60]  Marcelo Emilio,et al.  On the Constancy of the Solar Diameter. II. , 2000 .

[61]  M. Kundu,et al.  Soft X-Ray and Gyroresonance Emission above Sunspots , 2000 .

[62]  A. V. R. Silva,et al.  Solar Radius Variations at 48 GHz Correlated with Solar Irradiance , 1999 .

[63]  C. Sastry,et al.  The Gauribidanur Radioheliograph , 1998 .

[64]  Stephen M. White,et al.  Coronal Currents, Magnetic Fields, and Heating in a Solar Active Region , 1998 .

[65]  K. Shibasaki,et al.  Sunspot Gyroresonance Emission at 17 GHz: A Statistical Study , 1997 .

[66]  M. Kundu,et al.  Nobeyama Radio Observatory report, no. 361: The radio properties of solar active region soft x-ray transient brightenings , 1995 .

[67]  K. Shibasaki,et al.  The Nobeyama radioheliograph , 1994, Proc. IEEE.

[68]  C. Alissandrakis Radio observations of the quiet solar corona , 1994 .

[69]  K. Shibasaki,et al.  A Purely Polarized S-Component at 17 GHz , 1994 .

[70]  G. B. Gel'Frejkh,et al.  Spectral observations of active region sources with RATAN-600 and WSRT. [Westerbork Synthesis Radio Telescope] , 1993 .

[71]  R. Howard The magnetic fields of active regions , 1991 .

[72]  P. McIntosh The classification of sunspot groups , 1990 .

[73]  B. Somov Non-neutral current sheets and solar flare energetics , 1986 .

[74]  K. Shibasaki,et al.  Polar-cap and coronal-hole-associated brightenings of the sun at millimeter wavelengths , 1986 .

[75]  A. N. Korzhavin,et al.  The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission , 1982 .

[76]  M. Simon,et al.  Submillimeter observations of solar active regions. , 1977 .

[77]  J. Castelli,et al.  Radio spectrum of an active solar region determined from the 20 July 1963 eclipse. , 1966 .

[78]  T. Kakinuma,et al.  A MODEL FOR THE SOURCES OF THE SLOWLY VARYING COMPONENT OF MICROWAVE SOLAR RADIATION , 1962 .

[79]  N L JOHNSON,et al.  Bivariate distributions based on simple translation systems. , 1949, Biometrika.

[80]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[81]  A. Pellizzoni,et al.  A Python approach for solar data analysis: SUNDARA (SUNDish Active Region Analyser), preliminary development , 2021 .

[82]  Mario M. Bisi,et al.  Radio observatories and instrumentation used in space weather science and operations , 2020, Journal of Space Weather and Space Climate.

[83]  E. Murphy,et al.  Science with a next-generation Very Large Array , 2019 .

[84]  K. Klein,et al.  Microwave radio emissions as a proxy for coronal mass ejection speed in arrival predictions of interplanetary coronal mass ejections at 1 AU , 2017 .

[85]  Sabrina Hirsch,et al.  Tools Of Radio Astronomy , 2016 .

[86]  Véronique Delouille,et al.  The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images , 2014 .

[87]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[88]  Fausto Fiorillo,et al.  Measurement of Magnetic Fields , 2004 .

[89]  Nichi DAmico,et al.  The Sardinia Radio Telescope , 2004 .

[90]  K. Shibasaki Radio Synoptic Maps and Polar CAP Brightening , 1998 .

[91]  D. Gary Imaging Spectroscopy of the Non-Flaring Sun , 1996 .

[92]  G. Y. Smolkov,et al.  The Siberian Solar Radio-Telescope: Parameters and principle of operation, objectives and results of first observations of spatio-temporal properties of development of active regions and flares , 1986 .

[93]  G. Dulk,et al.  Radio Emission from the Sun and Stars , 1985 .

[94]  A. Kislyakov,et al.  Slowly varying component spectrum of the solar radio emission at millimetre wavelengths , 1972 .

[95]  P. Kaufmann Some characteristics of an S-component of solar radiation identified on November 1966 eclipse at 4.28-cm wavelength , 1968 .

[96]  J. Wild Radio observations of solar flares , 1964 .