Solar Observations with Single-Dish INAF Radio Telescopes: Continuum Imaging in the 18 – 26 GHz Range
暂无分享,去创建一个
M. N. Iacolina | A. Navarrini | G. Murtas | M. Bachetti | S. Righini | G. Serra | G. Pupillo | A. Pellizzoni | C. Tiburzi | P. Zucca | R. Concu | A. Melis | M. Messerotti | P. Marongiu | A. Ladu | A. Orfei | F. Buffa | G. Deiana | A. Maccaferri | T. Pisanu | E. Egron | A. Saba | M. Pili | S. Guglielmino | S. Mulas | L. Schirru | P. Ortu | G. Valente | M. Marongiu | S. Loru | A. Zanichelli
[1] Francesco Berrilli,et al. Current state and perspectives of Space Weather science in Italy , 2020 .
[2] J. Raulin,et al. Spectral signature of solar active region in millimetre and submillimetre wavelengths , 2020 .
[3] C. Alissandrakis. Structure of the Solar Atmosphere: A Radio Perspective , 2020, Frontiers in Astronomy and Space Sciences.
[4] M. N. Iacolina,et al. New high-frequency radio observations of the Cygnus Loop supernova remnant with the Italian radio telescopes , 2020, 2009.09948.
[5] C. G. Giménez de Castro,et al. The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24 , 2020, The Astrophysical Journal.
[6] M. Marengoni,et al. Correlations of Sunspot Physical Characteristics during Solar Cycle 23 , 2020, Solar Physics.
[7] M. Kazachenko,et al. Active Region Irradiance during Quiescent Periods: New Insights from Sun-as-a-star Spectra , 2020, The Astrophysical Journal.
[8] A. Nindos,et al. Incoherent Solar Radio Emission , 2020, Frontiers in Astronomy and Space Sciences.
[9] M. Tornikoski,et al. Identifying 8 mm Radio Brightenings During the Solar Activity Minimum , 2020, Solar Physics.
[10] B. Dabrowski,et al. Interferometric imaging with LOFAR remote baselines of the fine structures of a solar type-IIIb radio burst , 2020, Astronomy & Astrophysics.
[11] C. Guidorzi,et al. Methods for detection and analysis of weak radio sources with single-dish radio telescopes , 2020, Experimental Astronomy.
[12] Ole Streicher,et al. SunPy: A Python package for Solar Physics , 2020, J. Open Source Softw..
[13] Kevin Reardon,et al. The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package , 2020, The Astrophysical Journal.
[14] C. G. Giménez de Castro,et al. The Solar Radius at 37 GHz Through Cycles 22 to 24 , 2019, Solar Physics.
[15] Йан Йихуа,et al. Scale sequentially CLEAN for Mingantu Spectral Radioheliograph , 2019, Solar-Terrestrial Physics.
[16] M. Loukitcheva. First solar observations with ALMA , 2018, Advances in Space Research.
[17] A. Kosovichev,et al. Cyclic Changes of the Sun’s Seismic Radius , 2018, The Astrophysical Journal.
[18] M. N. Iacolina,et al. Investigating the high-frequency spectral features of SNRs Tycho, W44, and IC443 with the Sardinia Radio Telescope , 2018, 1805.04376.
[19] A. Pellizzoni,et al. SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA) , 2018 .
[20] M. C. Toribio,et al. Shock Location and CME 3-D Reconstruction of a Solar Type II Radio Burst with LOFAR , 2018, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC).
[21] A. Valio,et al. Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity , 2017, 1712.06771.
[22] M. Tornikoski,et al. Eruptive Solar Prominence at 37 GHz , 2017 .
[23] Marlon Núñez,et al. Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events , 2017 .
[24] A. Melis,et al. Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 and 7 GHz , 2017, 1705.06886.
[25] S. White,et al. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping , 2017, Solar Physics.
[26] G. Comoretto,et al. The Sardinia Radio Telescope - From a technological project to a radio observatory , 2017, 1703.09673.
[27] R. Perley,et al. An Accurate Flux Density Scale from 50 MHz to 50 GHz , 2016, 1609.05940.
[28] M. Messerotti. Radio science for space weather , 2016, 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC).
[29] N. Gopalswamy. Solar activity studies using microwave imaging observations , 2016, 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC).
[30] A. Norton,et al. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015 , 2016, 1603.02552.
[31] A. Melis,et al. Sardinia Radio Telescope: General Description, Technical Commissioning and First Light , 2015, 1603.06134.
[32] E. Vinyaĭkin. Frequency dependence of the evolution of the radio emission of the supernova remnant Cas A , 2014 .
[33] C. G. Giménez de Castro,et al. THE 17 GHz ACTIVE REGION NUMBER , 2014, 1406.2252.
[34] Xudong Sun,et al. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH , 2013 .
[35] K. Shibasaki. Long-Term Global Solar Activity Observed by the Nobeyama Radioheliograph (Special Issue : Twenty Years of Nobeyama Radioheliograph) , 2013 .
[36] V. E. Abramov-Maximov,et al. Long-Term Oscillations of Sunspots from Simultaneous Observations with the Nobeyama Radioheliograph and Solar Dynamics Observatory (Special Issue : Twenty Years of Nobeyama Radioheliograph) , 2013 .
[37] A. N. Korzhavin,et al. Local maximum in the microwave spectrum of solar active regions as a factor in predicting powerful flares , 2012, Geomagnetism and Aeronomy.
[38] I. Podgorny,et al. Magnetohydrodynamic simulation of a solar flare: 2. Flare model and simulation using active-region magnetic maps , 2012, Geomagnetism and Aeronomy.
[39] A. Stupishin,et al. On Magnetic Fields of Active Regions at Coronal Heights , 2012 .
[40] Kiyoto Shibasaki,et al. Radio Emission of the Quiet Sun and Active Regions (Invited Review) , 2011 .
[41] C. G. Giménez de Castro,et al. THE BEHAVIOR OF THE 17 GHz SOLAR RADIUS AND LIMB BRIGHTENING IN THE SPOTLESS MINIMUM XXIII/XXIV , 2011 .
[42] A. Jaffey,et al. Heliophysics Event Knowledgebase for the Solar Dynamics Observatory (SDO) and Beyond , 2010, Solar Physics.
[43] A. Thompson,et al. The Atacama Large Millimeter/Submillimeter Array , 2009, Proceedings of the IEEE.
[44] Joaquim E. R. Costa,et al. Solar atmospheric model over a highly polarized 17 GHz active region , 2008 .
[45] Robert N. Martin,et al. New telescopes for ground-based solar observations at submillimeter and mid-infrared , 2008, Astronomical Telescopes + Instrumentation.
[46] E. Landi,et al. The Quiet-Sun Differential Emission Measure from Radio and UV Measurements , 2008 .
[47] T. Kosugi,et al. The Hinode (Solar-B) Mission: An Overview , 2007 .
[48] Jeongwoo Lee. Radio Emissions from Solar Active Regions , 2007 .
[49] M. Barbera,et al. The X-Ray Telescope (XRT) for the Hinode Mission , 2007 .
[50] W. Thompson. Coordinate systems for solar image data , 2006 .
[51] P. Chainais,et al. Segmentation of EIT images using fuzzy clustering. A preliminary study , 2005 .
[52] Joaquim E. R. Costa,et al. Diffuse Component Spectra of Solar Active Regions at Submillimeter Wavelengths , 2005 .
[53] Joaquim E. R. Costa,et al. Solar atmospheric model with spicules applied to radio observation , 2005 .
[54] R. I. Bush,et al. On the Constancy of the Solar Diameter , 2004 .
[55] S. V. Lesovoi,et al. The Siberian Solar Radio Telescope: the current state of the instrument, observations, and data , 2003 .
[56] T. Yokoyama. Magnetohydrodynamic Simulation of a Solar Flare , 2002 .
[57] G. Gelfreikh,et al. Spatially resolved microwave oscillations above a sunspot , 2002 .
[58] K. Tapping,et al. Sources of the Slowly-Varying Component of Solar Microwave Emission and their Relationship with their Host Active Regions , 2001 .
[59] J. Raulin,et al. A Radio Study of the Evolution of Spatial Structure of an Active Region and Flare Productivity , 2001 .
[60] Marcelo Emilio,et al. On the Constancy of the Solar Diameter. II. , 2000 .
[61] M. Kundu,et al. Soft X-Ray and Gyroresonance Emission above Sunspots , 2000 .
[62] A. V. R. Silva,et al. Solar Radius Variations at 48 GHz Correlated with Solar Irradiance , 1999 .
[63] C. Sastry,et al. The Gauribidanur Radioheliograph , 1998 .
[64] Stephen M. White,et al. Coronal Currents, Magnetic Fields, and Heating in a Solar Active Region , 1998 .
[65] K. Shibasaki,et al. Sunspot Gyroresonance Emission at 17 GHz: A Statistical Study , 1997 .
[66] M. Kundu,et al. Nobeyama Radio Observatory report, no. 361: The radio properties of solar active region soft x-ray transient brightenings , 1995 .
[67] K. Shibasaki,et al. The Nobeyama radioheliograph , 1994, Proc. IEEE.
[68] C. Alissandrakis. Radio observations of the quiet solar corona , 1994 .
[69] K. Shibasaki,et al. A Purely Polarized S-Component at 17 GHz , 1994 .
[70] G. B. Gel'Frejkh,et al. Spectral observations of active region sources with RATAN-600 and WSRT. [Westerbork Synthesis Radio Telescope] , 1993 .
[71] R. Howard. The magnetic fields of active regions , 1991 .
[72] P. McIntosh. The classification of sunspot groups , 1990 .
[73] B. Somov. Non-neutral current sheets and solar flare energetics , 1986 .
[74] K. Shibasaki,et al. Polar-cap and coronal-hole-associated brightenings of the sun at millimeter wavelengths , 1986 .
[75] A. N. Korzhavin,et al. The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission , 1982 .
[76] M. Simon,et al. Submillimeter observations of solar active regions. , 1977 .
[77] J. Castelli,et al. Radio spectrum of an active solar region determined from the 20 July 1963 eclipse. , 1966 .
[78] T. Kakinuma,et al. A MODEL FOR THE SOURCES OF THE SLOWLY VARYING COMPONENT OF MICROWAVE SOLAR RADIATION , 1962 .
[79] N L JOHNSON,et al. Bivariate distributions based on simple translation systems. , 1949, Biometrika.
[80] N. L. Johnson,et al. Systems of frequency curves generated by methods of translation. , 1949, Biometrika.
[81] A. Pellizzoni,et al. A Python approach for solar data analysis: SUNDARA (SUNDish Active Region Analyser), preliminary development , 2021 .
[82] Mario M. Bisi,et al. Radio observatories and instrumentation used in space weather science and operations , 2020, Journal of Space Weather and Space Climate.
[83] E. Murphy,et al. Science with a next-generation Very Large Array , 2019 .
[84] K. Klein,et al. Microwave radio emissions as a proxy for coronal mass ejection speed in arrival predictions of interplanetary coronal mass ejections at 1 AU , 2017 .
[85] Sabrina Hirsch,et al. Tools Of Radio Astronomy , 2016 .
[86] Véronique Delouille,et al. The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images , 2014 .
[87] C. J. Wolfson,et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .
[88] Fausto Fiorillo,et al. Measurement of Magnetic Fields , 2004 .
[89] Nichi DAmico,et al. The Sardinia Radio Telescope , 2004 .
[90] K. Shibasaki. Radio Synoptic Maps and Polar CAP Brightening , 1998 .
[91] D. Gary. Imaging Spectroscopy of the Non-Flaring Sun , 1996 .
[92] G. Y. Smolkov,et al. The Siberian Solar Radio-Telescope: Parameters and principle of operation, objectives and results of first observations of spatio-temporal properties of development of active regions and flares , 1986 .
[93] G. Dulk,et al. Radio Emission from the Sun and Stars , 1985 .
[94] A. Kislyakov,et al. Slowly varying component spectrum of the solar radio emission at millimetre wavelengths , 1972 .
[95] P. Kaufmann. Some characteristics of an S-component of solar radiation identified on November 1966 eclipse at 4.28-cm wavelength , 1968 .
[96] J. Wild. Radio observations of solar flares , 1964 .