Four centuries of geomagnetic secular variation from historical records

We present a new model of the magnetic field at the core–mantle boundary for the interval 1590–1990. The model, called gufm1, is based on a massive new compilation of historical observations of the magnetic field. The greater part of the new dataset originates from unpublished observations taken by mariners engaged in merchant and naval shipping. Considerable attention is given to both correction of data for possible mislocation (originating from poor knowledge of longitude) and to proper allocation of error in the data. We adopt a stochastic model for uncorrected positional errors that properly accounts for the nature of the noise process based on a Brownian motion model. The variability of navigational errors as a function of the duration of the voyages that we have analysed is consistent with this model. For the period before 1800, more than 83 000 individual observations of magnetic declination were recorded at more than 64 000 locations; more than 8000 new observations are for the 17th century alone. The time–dependent field model that we construct from the dataset is parametrized spatially in terms of spherical harmonics and temporally in B–splines, using a total of 36 512 parameters. The model has improved the resolution of the core field, and represents the longest continuous model of the field available. However, full exploitation of the database may demand a new modelling methodology.

[1]  O. D. Kellogg Foundations of potential theory , 1934 .

[2]  Jeremy Bloxham,et al.  Geomagnetic secular variation , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Philip B. Stark,et al.  Geomagnetic field models incorporating frozen‐flux constraints , 1993 .

[4]  Gauthier Hulot,et al.  Uniqueness of mainly dipolar magnetic fields recovered from directional data , 1997 .

[5]  David Gubbins,et al.  Geomagnetic field analysis ‐ I. Stochastic inversion , 1983 .

[6]  Bradford M. Clement,et al.  Geographical distribution of transitional VGPs: Evidence for non-zonal equatorial symmetry during the Matuyama-Brunhes geomagnetic reversal , 1991 .

[7]  Richard Holme,et al.  The cause and treatment of anisotropic errors in near-Earth geomagnetic data , 1997 .

[8]  Paul H. Roberts,et al.  On Analysis of the Secular Variation , 1965 .

[9]  S. R. C. Malin,et al.  The direction of the Earth's magnetic field at London, 1570-1975 , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  Robert L. Parker,et al.  Regularized geomagnetic field modelling using monopoles , 1994 .

[11]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[12]  George E. Backus,et al.  Bayesian inference in geomagnetism , 1988 .

[13]  Jeremy Bloxham,et al.  Models of the magnetic field at the core-mantle boundary for 1715, 1777, and 1842 , 1986 .

[14]  Michael W. McElhinny,et al.  The time-averaged paleomagnetic field 0–5 Ma , 1996 .

[15]  David Gubbins,et al.  Earth's magnetic field in the Seventeenth Century , 1990 .

[16]  George E. Backus,et al.  Trimming and procrastination as inversion techniques , 1996 .

[17]  Ulrich R. Christensen,et al.  Core flow inversion tested with numerical dynamo models , 2000 .

[18]  Catherine Constable,et al.  The influence of correlated crustal signals in modelling the main geomagnetic field , 1997 .

[19]  Edward Sabine Contributions to terrestrial magnetism, No. 2 , 1837 .

[20]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[21]  David Gubbins,et al.  Persistent patterns in the geomagnetic field during the last 2.5 Myr , 1996 .

[22]  Kathy Whaler,et al.  Spherical harmonic analysis of the geomagnetic field: an example of a linear inverse problem , 1981 .

[23]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  A. Jackson,et al.  Statistical Treatment of Crustal Magnetization , 1994 .

[25]  David Gubbins,et al.  Can the Earth's magnetic field be sustained by core oscillations? , 1975 .

[26]  David Gubbins,et al.  Persistent patterns in the geomagnetic field over the past 2.5 Myr , 1993, Nature.

[27]  R. W. van Bemmelen,et al.  Die Abweichung der Magnetnadel : Beobachtungen, Säcular-Variation, Wert- und Isogonensysteme bis zur Mitte des XVIIIten Jahrhunderts , 1899 .

[28]  Jeremy Bloxham,et al.  Time‐dependent mapping of the magnetic field at the core‐mantle boundary , 1992 .

[29]  Jeremy Bloxham,et al.  Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary , 1985 .

[30]  Ricardo D. Fierro,et al.  The Total Least Squares Problem: Computational Aspects and Analysis (S. Van Huffel and J. Vandewalle) , 1993, SIAM Rev..

[31]  Jeffrey J. Love,et al.  Paleomagnetic volcanic data and geometric regularity of reversals and excursions , 1998 .

[32]  David A. Schneider,et al.  The time‐averaged paleomagnetic field , 1990 .

[33]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[34]  Catherine Constable,et al.  The time‐averaged geomagnetic field: global and regional biases for 0–5 Ma , 1997 .

[35]  Jeremy Bloxham,et al.  The secular variation of Earth's magnetic field , 1985, Nature.

[36]  A. Russell,et al.  Oldest known amphisbaenian from the Upper Cretaceous of Chinese Inner Mongolia , 1993, Nature.

[37]  Vincent Courtillot,et al.  How complex is the time-averaged geomagnetic field over the past 5 Myr? , 1998 .

[38]  D. R. Barraclough,et al.  Historical observations of the geomagnetic field , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[39]  Jeffrey J. Love,et al.  Optimized kinematic dynamos , 1996 .

[40]  A.R.T. Jonkers North by Northwest. Seafaring, Science, and the Earth Magnetic Field (1600-1800) , 2000 .

[41]  A. Jackson,et al.  Bounding the long wavelength crustal magnetic field , 1996 .

[42]  Andrew Jackson,et al.  Accounting for crustal magnetization in models of the core magnetic field , 1990 .

[43]  C. Laj,et al.  Geomagnetic reversal paths , 1991, Nature.

[44]  Catherine Constable,et al.  The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr , 1995 .

[45]  George E. Backus,et al.  Harmonic splines for geomagnetic modelling , 1982 .

[46]  Ronald T. Merrill,et al.  Geomagnetic polarity transitions , 1999 .

[47]  D. R. Barraclough,et al.  Spherical Harmonic Analyses of the Geomagnetic Field for Eight Epochs between 1600 and 1910 , 1974 .

[48]  R. Baldwin,et al.  The Quest for Longitude , 1998 .

[49]  Pierre Camps,et al.  Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals , 1993, Nature.

[50]  Rabi Bhattacharya,et al.  Stochastic processes with applications , 1990 .