A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods

We give computational results to study the accuracy of several quasicontinuum methods for two benchmark problems – the stability of a Lomer dislocation pair under shear and the stability of a lattice to plastic slip under tensile loading. We find that our theoretical analysis of the accuracy near instabilities for one-dimensional model problems can successfully explain most of the computational results for these multi-dimensional benchmark problems. However, we also observe some clear discrepancies, which suggest the need for additional theoretical analysis and benchmark problems to more thoroughly understand the accuracy of quasicontinuum methods.

[1]  Xingjie Helen Li,et al.  A Generalized Quasi-Nonlocal Atomistic-to-Continuum Coupling Method with Finite Range Interaction , 2010 .

[2]  Christoph Ortner,et al.  Iterative Methods for the Force-based Quasicontinuum Approximation , 2009 .

[3]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[4]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[5]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  Ping Lin,et al.  Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model , 2003, Math. Comput..

[8]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[9]  Christoph Ortner,et al.  Accuracy of quasicontinuum approximations near instabilities , 2009, 0905.2914.

[10]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[11]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[12]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-Based Quasicontinuum Approximation of Homogeneous Tensile Deformation , 2010, Multiscale Model. Simul..

[13]  Mitchell Luskin,et al.  An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation , 2009, SIAM J. Numer. Anal..

[14]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[15]  Mitchell Luskin,et al.  Iterative Solution of the Quasicontinuum Equilibrium Equations with Continuation , 2008, J. Sci. Comput..

[16]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[17]  Christoph Ortner,et al.  Analysis of the quasicontinuum method , 2006 .

[18]  Christoph Ortner,et al.  An Analysis of Node-Based Cluster Summation Rules in the Quasicontinuum Method , 2008, SIAM J. Numer. Anal..

[19]  Thomas Goldstein Algorithms and Applications for L1 Minimization , 2010 .

[20]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[21]  Florian Theil,et al.  Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..

[22]  Yanzhi Zhang,et al.  A Quadrature-Rule Type Approximation to the Quasi-Continuum Method , 2010, Multiscale Model. Simul..

[23]  Endre Süli,et al.  Stress-based atomistic/continuum coupling : a new variant of the quasicontinuum approximation , 2011 .

[24]  Mitchell Luskin,et al.  AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .

[25]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[26]  V. Gavini,et al.  A field theoretical approach to the quasi-continuum method , 2011 .

[27]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[28]  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potential: 1D and 2D Case , 2010 .

[29]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[30]  M. Luskin,et al.  An Analysis of the Quasi-Nonlocal Quasicontinuum Approximation of the Embedded Atom Model , 2010, 1008.3628.

[31]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[32]  M. Luskin,et al.  Sharp Stability and Optimal Order Error Analysis of the quasi-nonlocal approximation of unconstrained linear and circular chains in 2-D , 2010 .

[33]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[34]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[35]  Paul T. Bauman,et al.  Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .

[36]  Mitchell Luskin,et al.  Analysis of the Quasi-Nonlocal Approximation of Linear and Circular Chains in the Plane , 2010, Multiscale Model. Simul..

[37]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[38]  G. V. Chester,et al.  Solid State Physics , 2000 .

[39]  Endre Süli,et al.  A priori error analysis of two force-based atomistic/continuum models of a periodic chain , 2011, Numerische Mathematik.

[40]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[41]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[42]  Endre Süli,et al.  ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION , 2008 .