Dependence of DNA Persistence Length on Ionic Strength and Ion Type.

Even though the persistence length L_{P} of double-stranded DNA plays a pivotal role in cell biology and nanotechnologies, its dependence on ionic strength I lacks a consensual description. Using a high-throughput single-molecule technique and statistical physics modeling, we measure L_{P} in the presence of monovalent (Li^{+}, Na^{+}, K^{+}) and divalent (Mg^{2+}, Ca^{2+}) metallic and alkyl ammonium ions, over a large range 0.5  mM≤I≤5  M. We show that linear Debye-Hückel-type theories do not describe even part of these data. By contrast, the Netz-Orland and Trizac-Shen formulas, two approximate theories including nonlinear electrostatic effects and the finite DNA radius, fit our data with divalent and monovalent ions, respectively, over the whole I range. Furthermore, the metallic ion type does not influence L_{P}(I), in contrast to alkyl ammonium monovalent ions at high I.

[1]  Alexey Savelyev,et al.  Chemically accurate coarse graining of double-stranded DNA , 2010, Proceedings of the National Academy of Sciences.

[2]  A. Tkachenko,et al.  DNA-programmed mesoscopic architecture. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  M. Heldal,et al.  X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria , 1985, Applied and environmental microbiology.

[4]  C. Tardin,et al.  How does temperature impact the conformation of single DNA molecules below melting temperature? , 2017, Nucleic acids research.

[5]  G. S. Manning The contribution of transient counterion imbalances to DNA bending fluctuations. , 2006, Biophysical journal.

[6]  J. R. Rossum Conductance Method for Checking Accuracy of Water Analyses , 1949 .

[7]  Kate Campbell,et al.  Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. , 2015, Journal of molecular biology.

[8]  M. Fixman The flexibility of polyelectrolyte molecules , 1982 .

[9]  G. S. Manning A procedure for extracting persistence lengths from light-scattering data on intermediate molecular weight DNA , 1981 .

[10]  J. Skolnick,et al.  Electrostatic Persistence Length of a Wormlike Polyelectrolyte , 1977 .

[11]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[12]  Jean-Louis Mergny,et al.  "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. , 2014, Accounts of chemical research.

[13]  D. Herschlag,et al.  Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere? , 2016, Journal of the American Chemical Society.

[14]  J. Joanny,et al.  Persistence Length of Polyelectrolyte Chains , 1993 .

[15]  C. Tardin,et al.  Probing a label-free local bend in DNA by single molecule tethered particle motion , 2015, Nucleic acids research.

[16]  S. Batsanov Ionic radii for aqueous solutions , 1963 .

[17]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[18]  C. Tardin,et al.  High-throughput single-molecule analysis of DNA–protein interactions by tethered particle motion , 2012, Nucleic acids research.

[19]  Sichun Yang,et al.  Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. , 2018, Angewandte Chemie.

[20]  M. Heldal,et al.  Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria , 1996 .

[21]  I. Pinto,et al.  (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review , 2015 .

[22]  D. Frenkel,et al.  Numerical evidence for nucleated self-assembly of DNA brick structures. , 2014, Physical review letters.

[23]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[24]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[25]  Kelly M. Thayer,et al.  Ion motions in molecular dynamics simulations on DNA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Tardin,et al.  Dependence of DNA Persistence Length on Ionic Strength of Solutions with Monovalent and Divalent Salts: A Joint Theory-Experiment Study , 2015, 1504.02666.

[27]  C. Roland,et al.  Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study , 2014, Nucleic acids research.

[28]  P. Nelson,et al.  Volume-exclusion effects in tethered-particle experiments: bead size matters. , 2005, Physical review letters.

[29]  C. Tardin,et al.  Probing DNA conformational changes with high temporal resolution by tethered particle motion , 2010, Physical biology.

[30]  A. Tulinsky,et al.  The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. , 1994, The Journal of biological chemistry.

[31]  Seon Jeong Kim,et al.  The Peculiar Response of DNA Hydrogel Fibers to a Salt and pH Stimulus. , 2009, Macromolecular rapid communications.

[32]  T. Odijk Polyelectrolytes near the rod limit , 1977 .

[33]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Jian Peng,et al.  Reconstructing spatial organizations of chromosomes through manifold learning , 2018, Nucleic acids research.

[35]  H. Orland,et al.  Variational charge renormalization in charged systems , 2002, The European physical journal. E, Soft matter.

[36]  Matthew W. Pennington,et al.  Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy. , 2005, Biophysical journal.

[37]  W. Webb,et al.  Ionic strength-dependent persistence lengths of single-stranded RNA and DNA , 2011, Proceedings of the National Academy of Sciences.

[38]  Joachim O. Rädler,et al.  Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. , 2016, Nano letters.

[39]  N. Ribeck,et al.  Nonlinear low-force elasticity of single-stranded DNA molecules. , 2009, Physical review letters.

[40]  E. Trizac,et al.  Effective charge versus bare charge: an analytical estimate for colloids in the infinite dilution limit , 2003, cond-mat/0301061.

[41]  Krystyna Zakrzewska,et al.  DNA and its counterions: a molecular dynamics study. , 2004, Nucleic acids research.

[42]  M. L. Bret Electrostatic contribution to the persistence length of a polyelectrolyte , 1982 .

[43]  I. Rouzina,et al.  Salt dependence of the elasticity and overstretching transition of single DNA molecules. , 2002, Biophysical journal.

[44]  A. Savelyev Do monovalent mobile ions affect DNA's flexibility at high salt content? , 2012, Physical chemistry chemical physics : PCCP.

[45]  E. Trizac,et al.  Bending stiff charged polymers: The electrostatic persistence length , 2016, 1611.00520.

[46]  Olivier Bernard,et al.  Aqueous solutions of tetraalkylammonium halides: ion hydration, dynamics and ion-ion interactions in light of steric effects. , 2014, Physical chemistry chemical physics : PCCP.

[47]  O. Saleh,et al.  Electrostatic Effects on the Conformation and Elasticity of Hyaluronic Acid, a Moderately Flexible Polyelectrolyte , 2017 .

[48]  Yizhak Marcus,et al.  Ionic radii in aqueous solutions , 1983 .