The variant gambit: COVID-19’s next move

[1]  J. Jaubert,et al.  A mouse-adapted SARS-CoV-2 strain replicating in standard laboratory mice , 2021, bioRxiv.

[2]  Eric A. Meyerowitz,et al.  Second International Guidelines for the Diagnosis and Management of Hereditary Hemorrhagic Telangiectasia , 2021, Annals of Internal Medicine.

[3]  Vineet D. Menachery,et al.  Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera , 2021, Nature Medicine.

[4]  A. Sigal,et al.  Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma , 2021, medRxiv.

[5]  Vineet D. Menachery,et al.  Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis , 2021, Nature.

[6]  L. Morris,et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma , 2021, bioRxiv.

[7]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, bioRxiv.

[8]  N. Loman,et al.  Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data , 2021, medRxiv.

[9]  Updated rapid risk assessment from ECDC on the risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA - first update. , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[10]  K. Kupferschmidt Fast-spreading U.K. virus variant raises alarms. , 2020, Science.

[11]  Rommie E. Amaro,et al.  SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma , 2020, bioRxiv.

[12]  Marcio K. Oikawa,et al.  Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic , 2020, Science.

[13]  J. Mascola,et al.  Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination , 2020, The New England journal of medicine.

[14]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2020, bioRxiv.

[15]  P. Shi,et al.  Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2 , 2020, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[16]  W. P. Duprex,et al.  Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape , 2020, bioRxiv.

[17]  Lisa E. Gralinski,et al.  SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo , 2020, Science.

[18]  Min Li,et al.  Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2 , 2020, Nature Communications.

[19]  D. Fremont,et al.  Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization , 2020, bioRxiv.

[20]  M. Beer,et al.  SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility , 2020, bioRxiv.

[21]  Vineet D. Menachery,et al.  Spike mutation D614G alters SARS-CoV-2 fitness , 2020, Nature.

[22]  Zhènglì Shí,et al.  Characteristics of SARS-CoV-2 and COVID-19 , 2020, Nature Reviews Microbiology.

[23]  Lisa E. Gralinski,et al.  A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice , 2020, Cell.

[24]  Imperial College COVID-19 Response Team,et al.  Age groups that sustain resurging COVID-19 epidemics in the United States , 2020, Science.

[25]  Vineet D. Menachery,et al.  Evasion of Type I Interferon by SARS-CoV-2 , 2020, Cell Reports.

[26]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, Cell.

[27]  A. Salas,et al.  Mapping genome variation of SARS-CoV-2 worldwide highlights the impact of COVID-19 super-spreaders , 2020, Genome research.

[28]  Lisa E. Gralinski,et al.  A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures , 2020, Nature.

[29]  E. Nikolakaki,et al.  SR/RS Motifs as Critical Determinants of Coronavirus Life Cycle , 2020, Frontiers in Molecular Biosciences.

[30]  Shuwen Liu,et al.  Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19 , 2020, Acta Pharmacologica Sinica.

[31]  Yan Li,et al.  Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy , 2020, Science.

[32]  G. Wei,et al.  Characterizing SARS-CoV-2 mutations in the United States , 2020, Research square.

[33]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[34]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, bioRxiv.

[35]  S. Rowland-Jones,et al.  Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus , 2020, Cell.

[36]  Vineet D. Menachery,et al.  The search for a COVID-19 animal model , 2020, Science.

[37]  Lisa E. Gralinski,et al.  SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract , 2020, Cell.

[38]  Daniel Wrapp,et al.  Site-specific glycan analysis of the SARS-CoV-2 spike , 2020, Science.

[39]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[40]  Shinji Makino,et al.  An Infectious cDNA Clone of SARS-CoV-2 , 2020, Cell Host & Microbe.

[41]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[42]  Nucleocapsid Protein , 2020, Definitions.

[43]  M. Ulaşlı,et al.  Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle , 2019, Journal of Virology.

[44]  Alexandra C Walls,et al.  Structural basis for human coronavirus attachment to sialic acid receptors , 2019, Nature Structural & Molecular Biology.

[45]  A. Ward,et al.  Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors , 2019, Nature Communications.

[46]  Yuelong Shu,et al.  GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[47]  Stefan Elbe,et al.  Data, disease and diplomacy: GISAID's innovative contribution to global health , 2017, Global challenges.

[48]  Gavin J. D. Smith,et al.  Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection , 2015, Nature Communications.

[49]  M. Denison,et al.  Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity , 2013, PLoS pathogens.

[50]  Guo-Ping Zhao,et al.  Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E. Domingo,et al.  Quasispecies dynamics and RNA virus extinction. , 2005, Virus research.