Silicon nanowire fabric as a lithium ion battery electrode material.

A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid-liquid-solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g(-1) were achieved without the addition of conductive carbon or binder.

[1]  Jing Kong,et al.  Superwetting nanowire membranes for selective absorption. , 2008, Nature nanotechnology.

[2]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[3]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[4]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[5]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[6]  Pengjian Zuo,et al.  Geometric and electronic studies of Li15Si4 for silicon anode , 2008 .

[7]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[8]  M. Endo,et al.  Nanotechnology: ‘Buckypaper’ from coaxial nanotubes , 2005, Nature.

[9]  Damon A. Smith,et al.  Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric. , 2010, ACS nano.

[10]  L. Lauhon,et al.  Ordered stacking fault arrays in silicon nanowires. , 2009, Nano letters.

[11]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[12]  B. Korgel,et al.  Importance of Solvent-Mediated Phenylsilane Decompositon Kinetics for High-Yield Solution-Phase Silicon Nanowire Synthesis , 2008 .

[13]  J. L. Hueso,et al.  Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. , 2010, Small.

[14]  Yong‐Mook Kang,et al.  Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery , 2010 .

[15]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[16]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[17]  Brian A. Korgel,et al.  Rapid SFLS Synthesis of Si Nanowires Using Trisilane with In situ Alkyl-Amine Passivation , 2011 .

[18]  Jun Chen,et al.  Single wall carbon nanotube paper as anode for lithium-ion battery , 2005 .

[19]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[20]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[21]  J. Dahn,et al.  Studies of Si1 − x C x Electrode Materials Prepared by High-Energy Mechanical Milling and Combinatorial Sputter Deposition , 2007 .

[22]  M. S. Dresselhaus,et al.  Model for Raman scattering from incompletely graphitized carbons , 1982 .

[23]  B. Korgel,et al.  Lamellar twinning in semiconductor nanowires , 2007 .

[24]  B. Korgel,et al.  Solution-liquid-solid (SLS) growth of silicon nanowires. , 2008, Journal of the American Chemical Society.

[25]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[26]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[27]  T. Hunter,et al.  Dephosphorylation of Cdk2 Thr160 by the Cyclin-Dependent Kinase-Interacting Phosphatase KAP in the Absence of Cyclin , 1995, Science.

[28]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[29]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[30]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[31]  C. Park,et al.  Towards High Performance Anodes with Fast Charge/Discharge Rate for LIB Based Electrical Vehicles , 2010 .

[32]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[33]  Damon A. Smith,et al.  Young’s Modulus and Size-Dependent Mechanical Quality Factor of Nanoelectromechanical Germanium Nanowire Resonators , 2008 .

[34]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[35]  Chao Zhong,et al.  Flexible free-standing graphene-silicon composite film for lithium-ion batteries , 2010 .

[36]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[37]  L. Trahey,et al.  Nanocomposites Derived from Phenol-Functionalized Si Nanoparticles for High Performance Lithium Ion Battery Anodes , 2009 .

[38]  B. Korgel,et al.  The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents. , 2005, Angewandte Chemie.

[39]  Jing Zhu,et al.  Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes , 2009 .

[40]  B. Korgel,et al.  Growth kinetics and metastability of monodisperse tetraoctylammonium bromide capped gold nanocrystals , 2004 .

[41]  D. Ugarte,et al.  Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties , 1995, Science.

[42]  M. Armand,et al.  Building better batteries , 2008, Nature.

[43]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[44]  Brian A. Korgel,et al.  Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals , 2003 .

[45]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[46]  Yi Cui,et al.  Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries , 2010 .

[47]  Barbara Laïk,et al.  Silicon nanowires as negative electrode for lithium-ion microbatteries , 2008 .

[48]  Ze Zhang,et al.  Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects , 2000 .

[49]  T. W. Żerda,et al.  Raman spectra of silicon carbide small particles and nanowires , 2005 .

[50]  Wenjun Zhang,et al.  Silicon nanowires for rechargeable lithium-ion battery anodes , 2008 .

[51]  B. Korgel,et al.  Electrostatic charging and manipulation of semiconductor nanowires , 2011 .