Local symmetry properties of pure three-qubit states

Entanglement types of pure states of three spin-½ particles are classified by means of their stabilizers in the group of local unitary transformations. It is shown that the stabilizer is generically discrete, and that a larger stabilizer indicates a stationary value for some local invariant. We describe all the exceptional states with enlarged stabilizers.

[1]  S Popescu,et al.  Multi-particle entanglement , 1998 .

[2]  W. Wootters Quantum entanglement as a quantifiable resource , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[4]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[5]  Ashish V. Thapliyal Multipartite pure-state entanglement , 1998 .

[6]  M. Nielsen Continuity bounds for entanglement , 1999, quant-ph/9908086.

[7]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[8]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.

[9]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[10]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[11]  D. Fivel Multiparticle Entanglement , 1999 .