Third harmonic distortion calculation of a self-oscillating power amplifier

It is difficult to analyze the harmonic distortion of a self-oscillating power amplifier (SOPA), because the SOPA is a hard nonlinear system without an external clock. The single or multiple sinusoidal inputs describing function (DF) method is commonly used to linearize a nonlinear element, but this method considers only the components at the same frequencies as the input signals (i.e., fundamental components) at the nonlinear element’s output. In this paper, besides the fundamental components, the third harmonic components are also calculated at the output of a comparator with three sinusoidal inputs, to create a linearized model of the comparator, and thus of the SOPA. The third harmonic distortion of the SOPA is calculated. The models of the zeroth and the first order SOPA are verified by behavioral simulation using MATLAB.

[1]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[2]  A.H.M. van Roermund,et al.  Analysis and design of high-performance asynchronous sigma-delta Modulators with a binary quantizer , 2006, IEEE Journal of Solid-State Circuits.

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  Michiel Steyaert,et al.  A/D Conversion Using Asynchronous Delta-Sigma Modulation and Time-to-Digital Conversion , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  M. Steyaert,et al.  SOPA: A high-efficiency line driver in 0.35 /spl mu/m CMOS using a self-oscillating power amplifier , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[6]  W. Dehaene,et al.  A 350-MHz combined TDC-DTC With 61 ps resolution for asynchronous ΔΣ ADC applications , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[7]  Michel Steyaert,et al.  Highly efficient xDSL line drivers in 0.35-μm CMOS using a self-oscillating power amplifier , 2003, IEEE J. Solid State Circuits.

[8]  Bruno Putzeys Simple Self-Oscillating Class D Amplifier with Full Output Filter Control , 2005 .

[9]  Rene Groenenberg,et al.  An Asynchronous Switching High-end Power Amplifier , 2002 .

[10]  Walid S. Saba,et al.  ANALYSIS AND DESIGN , 2000 .

[11]  Jan Doutreloigne,et al.  Distortion calculation of an asynchronous switching xDSL line-driver , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[12]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[13]  H S Pennypacker,et al.  On Behavioral Analysis , 1981, The Behavior analyst.

[14]  E. Roza,et al.  Analog-to-digital conversion via duty-cycle modulation , 1997 .

[15]  Jan Doutreloigne,et al.  A 765 mW high-voltage switching ADSL line-driver , 2005 .

[16]  Michiel Steyaert,et al.  Behavioral analysis of self-oscillating class D line drivers , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Jan Doutreloigne,et al.  A high-voltage switching ADSL line-driver, with an n-type output stage , 2008 .

[18]  J. Ackermann,et al.  Analysis and Design , 1993 .

[19]  W. N. Bailey Some Infinite Integrals Involving Bessel Functions , 1936 .

[20]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .