Suppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation

[1]  M. Winter,et al.  Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells , 2021, Journal of Energy Storage.

[2]  Neal Fairley,et al.  Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy , 2021 .

[3]  Xu Zhang,et al.  Interphase Engineering by Electrolyte Additives for Lithium-Rich Layered Oxides: Advances and Perspectives , 2021, ACS Energy Letters.

[4]  M. Winter,et al.  Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety , 2021 .

[5]  D. Sauer,et al.  Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect , 2020 .

[6]  M. Winter,et al.  A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2 ∣∣ natural graphite lithium ion battery cells using gas chromatography - barrier discharge ionization detector. , 2020, Journal of chromatography. A.

[7]  Qiang Chen,et al.  Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems , 2020, Transactions of Tianjin University.

[8]  Xiqian Yu,et al.  Investigations on the fundamental process of cathode electrolyte interphase formation and evolution for high-voltage cathodes. , 2019, ACS applied materials & interfaces.

[9]  Dirk Uwe Sauer,et al.  Investigation of capacity recovery during rest period at different states-of-charge after cycle life test for prismatic Li(Ni1/3Mn1/3Co1/3)O2-graphite cells , 2019, Journal of Energy Storage.

[10]  Y. S. Lin,et al.  An On-Line Transient Study on Gassing Mechanism of Lithium Titanate Batteries , 2019, Journal of The Electrochemical Society.

[11]  Julien Demeaux,et al.  Influence of the Positive Electrode on Li4Ti5O12(LTO) Electrode/Electrolyte Interfaces in Li-Ion Batteries , 2018 .

[12]  David H. K. Jackson,et al.  Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer , 2018 .

[13]  Qian Wang,et al.  Gas swelling behaviour at different stages in Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 pouch cells , 2017 .

[14]  B. Lucht,et al.  Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF6 , 2017 .

[15]  Zi‐Feng Ma,et al.  Challenges of Spinel Li4Ti5O12 for Lithium‐Ion Battery Industrial Applications , 2017 .

[16]  Qian Wang,et al.  Quantitative investigation of the gassing behavior in cylindrical Li 4 Ti 5 O 12 batteries , 2017 .

[17]  M. Winter,et al.  Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries , 2017 .

[18]  Weidong He,et al.  Review-Gassing Mechanism and Suppressing Solutions in Li4Ti5O12-Based Lithium-Ion Batteries , 2017 .

[19]  L. E. Ouatani,et al.  Temperature effects on Li 4 Ti 5 O 12 electrode/electrolyte interfaces at the first cycle: A X-ray Photoelectron Spectroscopy and Scanning Auger Microscopy study , 2016 .

[20]  Hubert A. Gasteiger,et al.  Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation , 2016 .

[21]  Zhixing Wang,et al.  Effect of methylene methanedisulfonate as an additive on the cycling performance of spinel lithium titanate electrode , 2015 .

[22]  Xinhai Li,et al.  Electrochemical Analysis for Enhancing Interface Layer of Spinel Li4Ti5O12: p-Toluenesulfonyl Isocyanate as Electrolyte Additive. , 2015, ACS applied materials & interfaces.

[23]  Yan‐Bing He,et al.  Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li4Ti5O12 Spheres of Densely Packed Nanocrystallites , 2015 .

[24]  Jiali Liu,et al.  Gassing behavior of lithium titanate based lithium ion batteries with different types of electrolytes , 2015 .

[25]  Weifeng Fan,et al.  Study of the surface reaction mechanism of Li4Ti5O12 anode for lithium-ion cells , 2015, Ionics.

[26]  Yan‐Bing He,et al.  Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating , 2015 .

[27]  Michael A. Danzer,et al.  Lithium plating in a commercial lithium-ion battery - A low-temperature aging study , 2015 .

[28]  Martin Winter,et al.  Review—Chemical Analysis for a Better Understanding of Aging and Degradation Mechanisms of Non-Aqueous Electrolytes for Lithium Ion Batteries: Method Development, Application and Lessons Learned , 2015 .

[29]  M. Winter,et al.  The Mechanism of SEI Formation on a Single Crystal Si(100) Electrode , 2015 .

[30]  Erik J. Berg,et al.  In Situ Gas Analysis of Li4Ti5O12 Based Electrodes at Elevated Temperatures , 2015 .

[31]  H. Gasteiger,et al.  Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry , 2015 .

[32]  Amit Gupta,et al.  Effect of Relaxation Periods over Cycling Performance of a Li-Ion Battery , 2015 .

[33]  Ming Liu,et al.  High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery , 2014 .

[34]  Zhe Li,et al.  A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification , 2014 .

[35]  Hubert A. Gasteiger,et al.  On-Line Electrochemical Mass Spectrometry Investigations on the Gassing Behavior of Li4Ti5O12 Electrodes and Its Origins , 2014 .

[36]  D. Stevens,et al.  An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells , 2014 .

[37]  Shejun Hu,et al.  How does lithium salt anion affect oxidation decomposition reaction of ethylene carbonate: A density functional theory study , 2013 .

[38]  Ming Liu,et al.  Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries , 2013 .

[39]  Kai Wu,et al.  Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature , 2013 .

[40]  Yang-Kook Sun,et al.  Titanium‐Based Anode Materials for Safe Lithium‐Ion Batteries , 2013 .

[41]  Peng Lu,et al.  Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li‐Ion Batteries , 2013 .

[42]  Martin Winter,et al.  The importance of “going nano” for high power battery materials , 2012 .

[43]  Lin Gu,et al.  Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. , 2012, Journal of the American Chemical Society.

[44]  Yan‐Bing He,et al.  Effects of TiO2 crystal structure on the performance of Li4Ti5O12 anode material , 2012 .

[45]  Dongmei Wu Kinetic performance of Li4Ti5O12 anode material synthesized by the solid-state method , 2012, Ionics.

[46]  N. Takami,et al.  Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction , 2011 .

[47]  S. Kerisit,et al.  Lithium diffusion in Li4Ti5O12 at high temperatures , 2011 .

[48]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[49]  R. Dedryvère,et al.  Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery , 2010 .

[50]  Zongping Shao,et al.  Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation , 2010 .

[51]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[52]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[53]  Zongping Shao,et al.  Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance , 2009 .

[54]  M. Wagemaker,et al.  Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12). , 2009, The journal of physical chemistry. B.

[55]  T. Gustafsson,et al.  How dynamic is the SEI , 2007 .

[56]  Jun-ichi Yamaki,et al.  Decomposition reaction of LiPF6-based electrolytes for lithium ion cells , 2006 .

[57]  Kristina Edström,et al.  A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries , 2006 .

[58]  Brett L. Lucht,et al.  Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries , 2005 .

[59]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[60]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[61]  M. Wagner,et al.  Electrolyte Decomposition Reactions on Tin- and Graphite-Based Anodes are Different , 2004 .

[62]  B. Scrosati,et al.  High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material , 2002 .

[63]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[64]  D. Aurbach,et al.  The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions, Using Simultaneous in Situ AFM, EQCM, FTIR, and EIS , 1999 .

[65]  Martin Winter,et al.  Insertion reactions in advanced electrochemical energy storage , 1998 .

[66]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[67]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .