Space, Time and Episodic Memory: the Hippocampus is all over the Cognitive Map

In recent years, the field has reached an impasse between models suggesting that the hippocampus is fundamentally involved in spatial processing and models suggesting that the hippocampus automatically encodes all dimensions of experience in the service of memory. Here, we consider key conceptual issues that have impeded progress in our understanding of hippocampal function, and we review findings that establish the scope and limits of hippocampal involvement in navigation and memory. We argue that space and time serve as a primary scaffold to break up experiences into specific contexts, and to organize multimodal input that is to be associated within a context. However, the hippocampus is clearly capable of incorporating additional dimensions into the scaffold if they are determined to be relevant in the event-defined context. Conceiving of the hippocampal representation as constrained by immediate task demands—yet preferring axes that involve space and time—helps to reconcile an otherwise disparate set of findings on the core function of the hippocampus.

[1]  Pierre Lavenex,et al.  The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient , 2014, Front. Hum. Neurosci..

[2]  E. Tulving,et al.  Organization of memory. , 1973 .

[3]  Christian F. Doeller,et al.  Establishing the Boundaries: The Hippocampal Contribution to Imagining Scenes , 2010, The Journal of Neuroscience.

[4]  K M Gothard,et al.  Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  J. Barrash A historical review of topographical disorientation and its neuroanatomical correlates. , 1998, Journal of clinical and experimental neuropsychology.

[6]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[7]  Andy C. H. Lee,et al.  Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint , 2009, Hippocampus.

[8]  R. Henson,et al.  How schema and novelty augment memory formation , 2012, Trends in Neurosciences.

[9]  R. Sutherland,et al.  The hippocampus is not necessary for a place response but may be necessary for pliancy. , 1999, Behavioral neuroscience.

[10]  Lila Davachi,et al.  Similarity Breeds Proximity: Pattern Similarity within and across Contexts Is Related to Later Mnemonic Judgments of Temporal Proximity , 2014, Neuron.

[11]  Eleanor A. Maguire,et al.  Patient HC with developmental amnesia can construct future scenarios , 2011, Neuropsychologia.

[12]  E. Maguire,et al.  Newcastle University Eprints , 2022 .

[13]  H. Eichenbaum,et al.  Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats , 2013, The Journal of Neuroscience.

[14]  M. Moser,et al.  A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation , 2015, Nature.

[15]  Yuji Naya,et al.  Context-dependent incremental timing cells in the primate hippocampus , 2014, Proceedings of the National Academy of Sciences.

[16]  E. Rolls,et al.  Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. , 1999, Cerebral cortex.

[17]  Jeffrey M. Zacks,et al.  Event Segmentation , 2007, Current directions in psychological science.

[18]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[19]  Arne D. Ekstrom,et al.  Differential Connectivity of Perirhinal and Parahippocampal Cortices within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging , 2012, The Journal of Neuroscience.

[20]  Jeffrey M. Zacks,et al.  Temporal changes as event boundaries: Processing and memory consequences of narrative time shifts , 2005 .

[21]  J. Duhamel,et al.  Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation , 2017, PLoS biology.

[22]  S. Romani,et al.  Theta sequences are essential for internally generated hippocampal firing fields , 2014, Nature Neuroscience.

[23]  Demis Hassabis,et al.  Differential engagement of brain regions within a ‘core’ network during scene construction , 2010, Neuropsychologia.

[24]  Mark P. Brandon,et al.  During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run , 2015, Neuron.

[25]  L. Davachi,et al.  Declarative Memory , 2008, Current directions in psychological science.

[26]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[27]  Sylvia Vitello,et al.  Roles of frontal and temporal regions in reinterpreting semantically ambiguous sentences , 2014, Front. Hum. Neurosci..

[28]  Maureen Ritchey,et al.  Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. , 2015, Progress in brain research.

[29]  H. Eichenbaum,et al.  Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? , 2014, Neuron.

[30]  Dagmar Zeithamova,et al.  Flexible Memories: Differential Roles for Medial Temporal Lobe and Prefrontal Cortex in Cross-Episode Binding , 2010, The Journal of Neuroscience.

[31]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[32]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[33]  C. Ranganath A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory , 2010, Hippocampus.

[34]  B. McNaughton,et al.  Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions , 1998, The Journal of Neuroscience.

[35]  David J. Foster,et al.  Memory and Space: Towards an Understanding of the Cognitive Map , 2015, The Journal of Neuroscience.

[36]  S. Becker,et al.  One spatial map or many? Spatial coding of connected environments. , 2014, Journal of experimental psychology. Learning, memory, and cognition.

[37]  Michael X. Cohen,et al.  Intracranial EEG Correlates of Expectancy and Memory Formation in the Human Hippocampus and Nucleus Accumbens , 2010, Neuron.

[38]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[39]  Arne D. Ekstrom,et al.  A Tale of Two Temporal Coding Strategies: Common and Dissociable Brain Regions Involved in Recency versus Associative Temporal Order Retrieval Strategies , 2017, Journal of Cognitive Neuroscience.

[40]  Itamar Kahn,et al.  The Organization of Mouse and Human Cortico-Hippocampal Networks Estimated by Intrinsic Functional Connectivity , 2016, Cerebral cortex.

[41]  N. Burgess,et al.  The hippocampus and memory: insights from spatial processing , 2008, Nature Reviews Neuroscience.

[42]  E. Tulving,et al.  Episodic and semantic memory , 1972 .

[43]  D. Hassabis,et al.  Using Imagination to Understand the Neural Basis of Episodic Memory , 2007, The Journal of Neuroscience.

[44]  M. Shapiro,et al.  A Map for Social Navigation in the Human Brain , 2015, Neuron.

[45]  Arne D. Ekstrom,et al.  Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans , 2014, Scientific Reports.

[46]  Charan Ranganath,et al.  The hippocampus generalizes across memories that share item and context information , 2016, bioRxiv.

[47]  Eric A. Zilli,et al.  Gradual Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations , 2006, Neuron.

[48]  C. Ranganath,et al.  Functional subregions of the human entorhinal cortex , 2015, eLife.

[49]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[50]  Jeffrey M. Zacks,et al.  Human brain activity time-locked to perceptual event boundaries , 2001, Nature Neuroscience.

[51]  M. Shapiro,et al.  Dynamic Coding of Goal-Directed Paths by Orbital Prefrontal Cortex , 2011, The Journal of Neuroscience.

[52]  Matthew L Shapiro,et al.  Memory Time , 2011, Neuron.

[53]  G. Winocur,et al.  The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: A longitudinal fMRI study , 2012, Hippocampus.

[54]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[55]  Charan Ranganath,et al.  The hippocampus: a special place for time , 2016, Annals of the New York Academy of Sciences.

[56]  Gary H. Glover,et al.  High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe , 2010, Journal of Cognitive Neuroscience.

[57]  J. O’Keefe,et al.  Single unit activity in the rat hippocampus during a spatial memory task , 2004, Experimental Brain Research.

[58]  Arne D. Ekstrom,et al.  Roles of human hippocampal subfields in retrieval of spatial and temporal context , 2015, Behavioural Brain Research.

[59]  E. Maguire,et al.  Navigation around London by a taxi driver with bilateral hippocampal lesions. , 2006, Brain : a journal of neurology.

[60]  E. Maguire,et al.  Memory , Imagination , and Predicting the Future : A Common Brain Mechanism ? , 2013 .

[61]  Matthias J. Gruber,et al.  Hippocampal Activity Patterns Carry Information about Objects in Temporal Context , 2014, Neuron.

[62]  H. Kuypers,et al.  Branching cortical neurons in cat which project to the colliculi and to the pons: a retrograde fluorescent double-labeling study , 2004, Experimental Brain Research.

[63]  H. Eichenbaum,et al.  Interplay of Hippocampus and Prefrontal Cortex in Memory , 2013, Current Biology.

[64]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[65]  Andrew P. Yonelinas,et al.  Detecting Changes in Scenes: The Hippocampus Is Critical for Strength-Based Perception , 2013, Neuron.

[66]  Arne D. Ekstrom,et al.  The Spectro-Contextual Encoding and Retrieval Theory of Episodic Memory , 2014, Front. Hum. Neurosci..

[67]  Jonathan W. Pillow,et al.  Discovering Event Structure in Continuous Narrative Perception and Memory , 2016, Neuron.

[68]  T Mimori,et al.  A case of polyarteritis nodosa who developed severe pneumonia. , 1998, The Keio journal of medicine.

[69]  Ranxiao Frances Wang,et al.  Human navigation in nested environments. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[70]  H. Eichenbaum The role of the hippocampus in navigation is memory. , 2017, Journal of neurophysiology.

[71]  Blake S. Porter,et al.  Hippocampal Representation of Related and Opposing Memories Develop within Distinct, Hierarchically Organized Neural Schemas , 2014, Neuron.

[72]  Arne D. Ekstrom,et al.  Dissociable networks involved in spatial and temporal order source retrieval , 2011, NeuroImage.

[73]  C. Stern,et al.  Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli , 2001, Hippocampus.

[74]  Y. Naya,et al.  Integrating What and When Across the Primate Medial Temporal Lobe , 2011, Science.

[75]  Halle R. Dimsdale-Zucker,et al.  CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields , 2017, bioRxiv.

[76]  David S. Touretzky,et al.  Context Learning in the Rodent Hippocampus , 2007, Neural Computation.

[77]  Arne D. Ekstrom,et al.  Human neural systems underlying rigid and flexible forms of allocentric spatial representation , 2013, Human brain mapping.

[78]  N. Takahashi,et al.  Pure topographic disorientation due to right retrosplenial lesion , 1997, Neurology.

[79]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[80]  John M. Pearce,et al.  Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors , 1998, Nature.

[81]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[82]  Howard Eichenbaum,et al.  Learning Causes Reorganization of Neuronal Firing Patterns to Represent Related Experiences within a Hippocampal Schema , 2013, The Journal of Neuroscience.

[83]  C B Cave,et al.  The hippocampus, memory, and space , 1991, Hippocampus.

[84]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[86]  N. Cohen,et al.  Amnesia is a Deficit in Relational Memory , 2000, Psychological science.

[87]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[88]  E. Rolls,et al.  View‐responsive neurons in the primate hippocampal complex , 1995, Hippocampus.

[89]  Andrew U. Frank,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1993, Lecture Notes in Computer Science.

[90]  Hanna Damasio,et al.  The neuroanatomical correlates of route learning impairment , 2000, Neuropsychologia.

[91]  B. Poucet Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. , 1993, Psychological review.

[92]  Matthias J. Gruber,et al.  Theta phase synchronization between the human hippocampus and the prefrontal cortex supports learning of unexpected information , 2017, bioRxiv.

[93]  Arne D. Ekstrom,et al.  Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory , 2014, NeuroImage.

[94]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[95]  Arne D. Ekstrom,et al.  Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study , 2016, Neuropsychologia.

[96]  Howard Eichenbaum,et al.  Distinct Pathways for Rule-Based Retrieval and Spatial Mapping of Memory Representations in Hippocampal Neurons , 2013, The Journal of Neuroscience.

[97]  M. Tamosiunaite,et al.  Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points , 2007, The Journal of Neuroscience.

[98]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[99]  Charan Ranganath,et al.  Navigating the human hippocampus without a GPS , 2015, Hippocampus.

[100]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[101]  J. Gabrieli,et al.  Event-Related Activation in the Human Amygdala Associates with Later Memory for Individual Emotional Experience , 2000, The Journal of Neuroscience.

[102]  Aiden E. G. F. Arnold,et al.  A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective , 2014, Front. Hum. Neurosci..

[103]  Eleanor A. Maguire,et al.  Scene construction in developmental amnesia: An fMRI study , 2014, Neuropsychologia.

[104]  James R. Brockmole,et al.  Simultaneous spatial updating in nested environments , 2003, Psychonomic bulletin & review.

[105]  Justin L. Vincent,et al.  Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[106]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[107]  H. Eichenbaum Time cells in the hippocampus: a new dimension for mapping memories , 2014, Nature Reviews Neuroscience.

[108]  Arne D. Ekstrom,et al.  Dynamics of Hippocampal Ensemble Activity Realignment: Time versus Space , 2000, The Journal of Neuroscience.

[109]  Howard Eichenbaum,et al.  Bidirectional prefrontal-hippocampal interactions support context-guided memory , 2016, Nature Neuroscience.

[110]  Daniel R. Montello,et al.  Scale and Multiple Psychologies of Space , 1993, COSIT.