Exact Solutions in Structured Low-Rank Approximation

Structured low-rank approximation is the problem of minimizing a weighted Frobenius distance to a given matrix among all matrices of fixed rank in a linear space of matrices. We study exact solutions to this problem by way of computational algebraic geometry. A particular focus lies on Hankel matrices, Sylvester matrices and generic linear spaces.

[1]  Claudiu Raicu Secant varieties of Segre–Veronese varieties , 2010, 1011.5867.

[2]  I.Dolgachev,et al.  Arrangements of Hyperplanes and Vector Bundles on $P^n$ , 1992 .

[3]  Jonathan D. Hauenstein,et al.  Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.

[4]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .

[5]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[6]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[7]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[8]  Robert E. Mahony,et al.  The geometry of weighted low-rank approximations , 2003, IEEE Trans. Signal Process..

[9]  Ragni Piene,et al.  Polar classes of singular varieties , 1978 .

[10]  Kristian Ranestad Algebraic Degree in Semidefinite and Polynomial Optimization , 2012 .

[11]  Rachid Deriche,et al.  Higher-Order Tensors in Diffusion Imaging , 2014, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data.

[12]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[13]  Narendra Karmarkar,et al.  On Approximate GCDs of Univariate Polynomials , 1998, J. Symb. Comput..

[14]  A. Holme The geometric and numerical properties of duality in projective algebraic geometry , 1988 .

[15]  W. Rey,et al.  On Weighted Low-Rank Approximation , 2013, 1302.0360.

[16]  Wolfram Decker Review of "Numerically Solving Polynomial Systems with Bertini" by Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler , 2014, ACCA.

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  E. Kaltofen,et al.  Structured Low Rank Approximation of a Sylvester Matrix , 2007 .

[19]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[20]  S. Friedland,et al.  Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors , 2013, 1311.1561.

[21]  R. Plemmons,et al.  Structured low rank approximation , 2003 .

[22]  Kristian Ranestad,et al.  A general formula for the algebraic degree in semidefinite programming , 2007, math/0701877.

[23]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[24]  Bernd Sturmfels,et al.  The maximum likelihood degree , 2004, math/0406533.

[25]  Ivan Markovsky,et al.  Structured low-rank approximation and its applications , 2008, Autom..