Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting

The recent synthesis of single-layer GaS and GaSe opens the question of stability for other single-layer group-III monochalcogenides (MX, M = Ga and In, X = S, Se, and Te) and how the dimension reduction affects the properties of these materials. Using a first-principles design approach, we determine that the single-layer group-III monochalcogenides exhibit low formation energies and are suitable for photocatalytic water splitting. First, density-functional calculations using a van der Waals functional reveal that the monochalcogenides have formation energies similar to that of single-layer MoS2, implying the ease of mechanically extracting single-layer monochalcogenides from their layered bulk counterparts. Next, calculations using a hybrid density functional and the quasiparticle many-body G0W0 approximation determine the conduction and valence band edge positions. Comparing the band edge positions with the redox potentials of water shows that single-layer monochalcogenides are potential photocatalysts ...

[1]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[2]  F. Bechstedt,et al.  Universal infrared absorbance of two-dimensional honeycomb group-IV crystals , 2013 .

[3]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[4]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[5]  Richard G. Hennig,et al.  Electronic structures of single-layer boron pnictides , 2012 .

[6]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[7]  D. Late,et al.  Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates , 2012 .

[8]  Lin-Wang Wang,et al.  Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution , 2012, 1203.1970.

[9]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[10]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[11]  E. Carter,et al.  First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[12]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[13]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[14]  C. Umrigar,et al.  Phase transformation in Si from semiconducting diamond to metallic β-Sn phase in QMC and DFT under hydrostatic and anisotropic stress , 2010, 1006.3253.

[15]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[16]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[17]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[18]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[19]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[20]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[21]  Alfred B. Anderson,et al.  Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple , 2007, Science.

[22]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[23]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[25]  G. Seifert,et al.  Tubular structures of GaS , 2004 .

[26]  W. Waghorne Invited Review Solubilities of the Silver Halides in Aqueous Mixtures of Methanol, Acetonitrile, and Dimethylsulfoxide , 2003 .

[27]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[28]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[29]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  A. Aruchamy,et al.  Photoelectrochemistry and photovoltaics of layered semiconductors , 1992 .

[35]  Helmut Tributsch,et al.  Interfacial properties of semiconducting transition metal chalcogenides , 1988 .

[36]  J. Martínez‐Pastor,et al.  Electrical and photovoltaic properties of indium‐tin‐oxide/p‐InSe/Au solar cells , 1987 .

[37]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[38]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[39]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .