MAP entropy estimation: Applications in robust image filtering
暂无分享,去创建一个
E. Gonzalez-Ramirez | G. Fleury | R. Ivanov | J. J. Villa-Hernández | Osvaldo Gutiérrez | J. I. de la Rosa | E. M. de la Rosa | Nivia Escalante
[1] L. Devroye. The double kernel method in density estimation , 1989 .
[2] Elias Masry,et al. Probability density estimation from sampled data , 1983, IEEE Trans. Inf. Theory.
[3] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[4] Gilles Fleury,et al. Minimum-entropy, PDF approximation, and kernel selection for measurement estimation , 2003, IEEE Trans. Instrum. Meas..
[5] Adam Krzyzak,et al. On the Hilbert kernel density estimate , 1999 .
[6] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] G. Fleury,et al. On the kernel selection for minimum-entropy estimation , 2002, IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276).
[8] Bahram Javidi,et al. Speckle removal using a maximum-likelihood technique with isoline gray-level regularization. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.
[9] Peyman Milanfar,et al. A Tour of Modern Image Filtering , 2013 .
[10] Luc Pronzato,et al. A minimum-entropy estimator for regression problems with unknown distribution of observation errors , 2001 .
[11] Peyman Milanfar,et al. Kernel Regression for Image Processing and Reconstruction , 2007, IEEE Transactions on Image Processing.
[12] Luc Pronzato,et al. Entropy minimization for parameter estimation problems with unknown distribution of the output noise , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[13] Ken D. Sauer,et al. Bayesian estimation of transmission tomograms using segmentation based optimization , 1992 .
[14] J. I. de la Rosa. Convergence of minimum-entropy robust estimators: applications in DSP and instrumentation , 2004 .
[15] C. Loader. Bandwidth selection: classical or plug-in? , 1999 .
[16] D. W. Scott,et al. Oversmoothed Nonparametric Density Estimates , 1985 .
[17] Luc Pronzato,et al. Minimum-entropy estimation in semi-parametric models , 2005, Signal Process..
[18] L. Devroye. A Note on the Usefulness of Superkernels in Density Estimation , 1992 .
[19] M. C. Jones,et al. Universal smoothing factor selection in density estimation: theory and practice , 1997 .
[20] G. Terrell. The Maximal Smoothing Principle in Density Estimation , 1990 .
[21] Ashok Srinivasan,et al. Efficient Nonparametric Density Estimation on the Sphere with Applications in Fluid Mechanics , 2000, SIAM J. Sci. Comput..
[22] Peyman Milanfar,et al. A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical , 2013, IEEE Signal Processing Magazine.
[23] Frédéric Champagnat,et al. A connection between half-quadratic criteria and EM algorithms , 2004, IEEE Signal Processing Letters.
[24] Ken D. Sauer,et al. A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..
[25] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .