Considerations for Imaging and Analyzing Neural Structures by STED Microscopy.

STED microscopy images of live or fixed brain tissue contain a wealth of geometric information about cellular structures down to the scale of individual dendritic spines and axonal structures. To extract such morphological data in a credible way, several considerations regarding image acquisition and analysis must be taken into account. This chapter highlights the parameters of primary importance for acquiring and analyzing STED images and interpreting STED microscopy data.

[1]  P. Kind,et al.  Stimulated Emission Depletion (STED) Microscopy Reveals Nanoscale Defects in the Developmental Trajectory of Dendritic Spine Morphogenesis in a Mouse Model of Fragile X Syndrome , 2014, The Journal of Neuroscience.

[2]  U. Valentin Nägerl,et al.  Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue , 2018, Cell.

[3]  James A Galbraith,et al.  Super-resolution microscopy at a glance , 2011, Journal of Cell Science.

[4]  S.W. HELL,et al.  A compact STED microscope providing 3D nanoscale resolution , 2009, Journal of microscopy.

[5]  U. Nägerl,et al.  Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity , 2017, Proceedings of the National Academy of Sciences.

[6]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[7]  Katrin I Willig,et al.  Nanoscopy of filamentous actin in cortical dendrites of a living mouse. , 2014, Biophysical journal.

[8]  Alf Honigmann,et al.  Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. , 2013, Biophysical journal.

[9]  Christopher Dunsby,et al.  A STED-FLIM microscope applied to imaging the natural killer cell immune synapse , 2011, BiOS.

[10]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[11]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[12]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[13]  R. Pepperkok,et al.  Spectral imaging and its applications in live cell microscopy , 2003, FEBS letters.

[14]  Edward S. Allgeyer,et al.  Two-colour live-cell nanoscale imaging of intracellular targets , 2016, Nature Communications.

[15]  KM Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;12(8):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[17]  Robert M Zucker,et al.  Reliability of confocal microscopy spectral imaging systems: Use of multispectral beads , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[18]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[19]  G. Zanghirati,et al.  Towards real-time image deconvolution: application to confocal and STED microscopy , 2013, Scientific Reports.

[20]  U Valentin Nägerl,et al.  Two-photon excitation STED microscopy in two colors in acute brain slices. , 2013, Biophysical journal.

[21]  G. Knott,et al.  Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation , 2015, eLife.

[22]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[24]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[25]  K. Willig,et al.  In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins , 2017, Scientific Reports.

[26]  J. Rothman,et al.  Two-color STED microscopy in living cells , 2011, Biomedical optics express.

[27]  U. Nägerl,et al.  STED microscopy for nanoscale imaging in living brain slices. , 2015, Methods.

[28]  Stefan W. Hell,et al.  Fluorescence depletion mechanisms in super-resolving STED microscopy , 2007 .

[29]  J Boutet de Monvel,et al.  Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. , 2001, Biophysical journal.

[30]  Toby D. M. Bell,et al.  Image artifacts in Single Molecule Localization Microscopy: why optimization of sample preparation protocols matters , 2015, Scientific Reports.

[31]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[32]  Andreas Schönle,et al.  Resolution scaling in STED microscopy. , 2008, Optics express.

[33]  S. Hell,et al.  Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. , 2011, Optics express.

[34]  J. Conchello,et al.  Three-dimensional imaging by deconvolution microscopy. , 1999, Methods.

[35]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[36]  A. Einstein Zur Quantentheorie der Strahlung , 1916 .

[37]  Claire M. Brown,et al.  Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control , 2011, Nature Protocols.

[38]  Bernardo L Sabatini,et al.  Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. , 2013, Biophysical journal.

[39]  S. Hell,et al.  Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms , 2010, PMC biophysics.

[40]  S. Hell,et al.  Two-color far-field fluorescence nanoscopy. , 2007, Biophysical journal.

[41]  U. Nägerl,et al.  Two-color STED imaging of synapses in living brain slices. , 2013, Methods in molecular biology.

[42]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[43]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[44]  Abbe The Relation of Aperture and Power in the Microscope , 1882 .

[45]  M. Fordham,et al.  An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy , 1987, The Journal of cell biology.

[46]  Christina Gross,et al.  Automated 4 D analysis of dendritic spine morphology : applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model , 2011 .

[47]  U Valentin Nägerl,et al.  Two-color STED microscopy of living synapses using a single laser-beam pair. , 2011, Biophysical journal.

[48]  Mark A A Neil,et al.  3‐D stimulated emission depletion microscopy with programmable aberration correction , 2014, Journal of biophotonics.