Noncommutative Approximation: Inverse-Closed Subalgebras and Off-Diagonal Decay of Matrices

We investigate two systematic constructions of inverse-closed subalgebras of a given Banach algebra or operator algebra $\ensuremath {\mathcal {A}}$, both of which are inspired by classical principles of approximation theory. The first construction requires a closed derivation or a commutative automorphism group on $\ensuremath {\mathcal {A}}$ and yields a family of smooth inverse-closed subalgebras of $\ensuremath {\mathcal {A}}$ that resemble the usual Hölder–Zygmund spaces. The second construction starts with a graded sequence of subspaces of $\ensuremath{\mathcal{A}}$ and yields a class of inverse-closed subalgebras that resemble the classical approximation spaces. We prove a theorem of Jackson–Bernstein type to show that in certain cases both constructions are equivalent.These results about abstract Banach algebras are applied to algebras of infinite matrices with off-diagonal decay. In particular, we obtain new and unexpected conditions of off-diagonal decay that are preserved under matrix inversion.

[1]  E. Kissin,et al.  Dense Q-subalgebras of Banach and C*-algebras and unbounded derivations of Banach and C*-algebras , 1993, Proceedings of the Edinburgh Mathematical Society.

[2]  R. Beals Characterization of pseudodifferential operators and applications , 1977 .

[3]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[4]  Steffen Roch,et al.  Limit Operators And Their Applications In Operator Theory , 2004 .

[5]  Paul L. Butzer,et al.  Semi-groups of operators and approximation , 1967 .

[6]  O. Bratteli Inductive limits of finite dimensional C*-algebras , 1972 .

[7]  E. Kissin,et al.  Differential properties of some dense subalgebras of C*-algebras , 1994, Proceedings of the Edinburgh Mathematical Society.

[8]  K. Deleeuw An harmonic analysis for operators II: Operators on Hilbert space and analytic operators , 1977 .

[9]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[10]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[11]  Qiyu Sun,et al.  WIENER’S LEMMA FOR INFINITE MATRICES , 2007 .

[12]  L. Brandenburg On identifying the maximal ideals in Banach algebras , 1975 .

[13]  Inverse closedness of approximation algebras , 2006 .

[14]  K. Gröchenig,et al.  Symmetry of Weighted L1‐Algebras and the GRS‐Condition , 2006 .

[15]  Karl Scherer,et al.  Approximationsprozesse und Interpolationsmethoden , 1968 .

[16]  A. Hulanicki On the spectrum of convolution operators on groups with polynomial growth , 1972 .

[17]  N. Nikolski In search of the invisible spectrum , 1999 .

[18]  Israel Gohberg,et al.  The band method for positive and strictly contractive extension problems: An alternative version and new applications , 1989 .

[19]  Karlheinz Gröchenig,et al.  Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices , 2006 .

[20]  A. Baskakov,et al.  Wiener's theorem and the asymptotic estimates of the elements of inverse matrices , 1990 .

[21]  Paul L. Butzer,et al.  Fourier analysis and approximation , 1971 .

[22]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[23]  A. G. Baskakov,et al.  Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis , 1997 .

[24]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[25]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[26]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[27]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[28]  Fourier series of operators and an extension of the F. and M. Riesz theorem , 1973 .

[29]  B. Silbermann,et al.  Fredholm theory and finite section method for band-dominated operators , 1998 .

[30]  James Glimm,et al.  On a certain class of operator algebras , 1960 .

[31]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[32]  Karlheinz Gröchenig,et al.  Wiener’s Lemma: Theme and Variations. An Introduction to Spectral Invariance and Its Applications , 2010 .

[33]  O. Bratteli Derivations, Dissipations and Group Actions on C*-algebras , 1987 .

[34]  K. Grōchenig,et al.  Banach algebras of pseudodifferential operators and their almost diagonalization , 2007, 0710.1989.

[35]  V. G. Kurbatov,et al.  Algebras of difference and integral operators , 1990 .

[36]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[37]  J. Sjöstrand,et al.  Wiener type algebras of pseudodifferential operators , 1995 .

[38]  D. W. Robinson,et al.  Unbounded derivations of C*-algebras , 1975 .

[39]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .